Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Mar-Apr;5(2):167-90.
doi: 10.1021/mp700151b. Epub 2008 Mar 21.

Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms

Affiliations
Review

Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms

Parayil Kumaran Ajikumar et al. Mol Pharm. 2008 Mar-Apr.

Abstract

Terpenoids represent a diverse class of molecules that provide a wealth of opportunities to address many human health and societal issues. The expansive array of structures and functionalities that have been evolved in nature provide an excellent pool of molecules for use in human therapeutics. While this class of molecules has members with therapeutic properties including anticancer, antiparasitic, antimicrobial, antiallergenic, antispasmodic, antihyperglycemic, anti-inflammatory, and immunomodulatory properties, supply limitations prevent the large scale use of some molecules. Many of these molecules are only found in ppm levels in nature thus requiring massive harvesting to obtain sufficient amounts of the drug. Synthetic biology and metabolic engineering provide innovative approaches to increase the production of the desired molecule in the native organism, and most importantly, transfer the biosynthetic pathways to other hosts. Microbial systems are well studied, and genetic manipulations allow the optimization of microbial metabolisms for the production of common terpenoid precursors. Using a host of tools, unprecedented advancements in the large scale production of terpenoids have been achieved in recent years. Identification of limiting steps and pathway regulation, coupled with design strategies to minimize terpenoid byproducts wih a high flux to the desired biosynthetic pathways, have yielded greater than 100-fold improvements in the production of a range of terpenoids. This review focuses on the biodiversity of terpenoids, the biosynthetic pathways involved, and engineering efforts to maximize the production through these pathways.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources