Calcium release site ultrastructure and the dynamics of puffs and sparks
- PMID: 18359948
- DOI: 10.1093/imammb/dqn004
Calcium release site ultrastructure and the dynamics of puffs and sparks
Abstract
When Markov chain models of intracellular Ca(2+)-regulated Ca(2+) channels are coupled via a mathematical representation of a Ca(2+) microdomain, simulated Ca(2+) release sites may exhibit the phenomenon of 'stochastic Ca(2+) excitability' reminiscent of Ca(2+) puffs and sparks. Interestingly, some single-channel models that include Ca(2+) inactivation are not particularly sensitive to channel density, so long as the requirement for inter-channel communication is satisfied, while other single-channel models that do not include Ca(2+) inactivation open and close synchronously only when the channel density is in a prescribed range. This observation led us to hypothesize that single-channel models with Ca(2+) inactivation would be less sensitive to the details of release site ultrastructure than models that lack a slow Ca(2+) inactivation process. To determine if this was the case, we simulated Ca(2+) release sites composed of instantaneously coupled Ca(2+)-regulated Ca(2+) channels whose random spatial locations were chosen from a uniform distribution on a disc of specified radius and compared the resulting release site dynamics to simulations with channels arranged on hexagonal lattices. Analysis of puff/spark statistics confirmed our hypothesis that puffs and sparks are less sensitive to the spatial organization of release sites when the single-channel model includes a slow inactivation process. We also investigated the validity of several different mean-field reductions that do not explicitly account for the details of release site ultrastructure. The most successful approximation maintains a distinction between each channel's substantial influence on its own stochastic gating and the collective contribution of elevated [Ca(2+)] from neighbouring channels.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
