Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Dec;5(12B):2534-46.
doi: 10.1101/gad.5.12b.2534.

An ATP-independent complex commits pre-mRNA to the mammalian spliceosome assembly pathway

Affiliations
Free article

An ATP-independent complex commits pre-mRNA to the mammalian spliceosome assembly pathway

S Michaud et al. Genes Dev. 1991 Dec.
Free article

Abstract

Previous studies have identified five distinct mammalian splicing complexes that assemble on pre-mRNA in vitro. Of these complexes, which include H, E, A, B, and C, only the B and C complexes have been isolated and shown directly to be functional intermediates in the splicing pathway. In this report we carried out a systematic analysis of the temporal and functional relationships among the H, E, A, and B complexes. Using gel filtration to isolate each complex, we show that H complex, which consists primarily of hnRNP proteins, assembles first in either the presence or absence of ATP. Subsequently, E complex, which contains stably bound U1 snRNP, is detected in reactions lacking ATP, whereas A complex, which contains stably bound U1 and U2 snRNPs, is detected in reactions containing ATP. We show that E complex can be chased into A and B complexes and that A complex can be chased into B complex. Both E and A complexes can also be chased into spliced products. In contrast, H complex cannot be chased into A or B complexes or spliced products under the same conditions. We conclude that in addition to the two spliceosome complexes (B and C), two distinct pre-splicesome complexes (E and A) are functional intermediates in the splicing pathway. Comparison of the efficiency of splicesome assembly on different pre-mRNAs has revealed dramatic differences. We show that these differences are first apparent at the time of E complex assembly. Thus, we conclude that E complex commits pre-mRNA to the splicing pathway and that this step is critical in determining the efficiency of mammalian spliceosome assembly.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources