Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;14(14):4293-306.
doi: 10.1002/chem.200701998.

Synthesis of antiproliferative Cephalotaxus esters and their evaluation against several human hematopoietic and solid tumor cell lines: uncovering differential susceptibilities to multidrug resistance

Affiliations

Synthesis of antiproliferative Cephalotaxus esters and their evaluation against several human hematopoietic and solid tumor cell lines: uncovering differential susceptibilities to multidrug resistance

Joseph D Eckelbarger et al. Chemistry. 2008.

Abstract

Deoxyharringtonine (2), homoharringtonine (3), homodeoxyharringtonine (4), and anhydroharringtonine (5) are reported to be among the most potent members of the antileukemia alkaloids isolated from the Cephalotaxus genus. Convergent syntheses of these four natural products are described, each involving novel synthetic methods and strategies. These syntheses enabled evaluation of several advanced natural and non-natural compounds against an array of human hematopoietic and solid tumor cells. Potent cytotoxicity was observed in several cell lines previously not challenged with these alkaloids. Variations in the structure of the ester chain within this family of alkaloids confer differing activity profiles against vincristine-resistant HL-60/RV+, signalling new avenues for molecular design of these natural products to combat multi-drug resistance.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Figure 2
Figure 2
Figure 3
Figure 3
Comparative antitumor effects of cephalotaxus esters against sensitive (filled symbols) and vincristine-resistant (open symbols) HL-60: ●/○: 4, ▼/▽: 3, ■/□: 2, ◆/◇: 89, ▲/△: 87.
Figure 4
Figure 4
Comparative antitumor effects of cephalotaxus esters against sensitive and vincristine-resistant HL-60.
Figure 5
Figure 5
Correlation of calculated logP values and MDR ratio for deoxyharringtonine (2), homoharringtonine (3), homodeoxyharringtonine (4), benzyldehydrohomoharringtonine 87, and bis(demethyl)deoxyharrintonine 89.
Scheme 1
Scheme 1
a) HONH2·HCl, NaOH, EtOH, H2O, 60–80 °C; b) iPr2NH, LiAlH4, THF, 60 °C; c) Et3N, THF, 23–60 °C; d) Cs2CO3, 1,4-dioxane, 100–150°C.
Scheme 2
Scheme 2
(a) DMAD, PhH, 23°C, 57%; (b) Cs2CO3, 1,4-dioxane, 100 °C, 92%.
Scheme 3
Scheme 3
a) Et3N, THF, 60 °C, 64%; b) Cs2CO3, 1,4-dioxane, 100 °C, 68%.
Scheme 4
Scheme 4
a) TMSCH2I, NaH, THF, 50°C, 62%; b) Tf2O; DMAD; TBAT, CH2Cl2, 23 °C, 53%.
Scheme 5
Scheme 5
Scheme 6
Scheme 6
a) Tf2O; PhCO2H·NEt3; DMAD; TBAT, CH2Cl2, 23 °C, 35%; b) Tf2O; PhCO2Cs; DMAD; TBAT, CH2Cl2, 23 °C, 64%; c) 31, Tf2O; 44, Cs2CO3; DMAD; TBAT, CH2Cl2, 23 °C.
Scheme 7
Scheme 7
Scheme 8
Scheme 8
a) KHMDS, Ph3PMeBr, THF, 60 °C, 75%; b) DMSO, Et3N, SO3·Pyr, CH2Cl2, 23 °C, 88%; c) CH2=CHMgBr, THF, −78→23 °C, 93%, dr 8:1; d) Grubbs II, CH2Cl2, 23°C, 95%; e) PhSeCl, MeCN, 0°C; mCPBA, Et3N, CH2Cl2, 0→23 °C; 98%; f) TBAF, THF, 23°C, 99%; g) NaIO4, CH2Cl2, H2O, 23 °C, 90%.
Scheme 9
Scheme 9
a) Et3N, THF, 23 °C, 85%; b) Cs2CO3, 1,4-dioxane, 100 °C, 76%.
Scheme 10
Scheme 10
Scheme 11
Scheme 11
a) Cs2CO3, TMSCH2I, MeCN, 23 °C, 75%; b) Me3CCOCl, AgOTf; PhSO2CH=CH2; TBAT, CH2Cl2, −45→23 °C, 77%.
Scheme 12
Scheme 12
a) SmI2, HMPA, tBuOH, THF, −45 °C, 74%; b) Cp2ZrHCl, THF, 40°C, 99%; c) Et3N, CbzCl, CH2Cl2, 23 °C, 50%; d) KHMDS, CbzCl, THF, 0°C, 86%; e) 2N HCl, MeOH, 23°C; Boc2O, Yb-(OTf)3·xH2O, CH2Cl2, 0 °C; f) IBX, DMSO, 23°C, 50% (2 steps); g) CrCl2, acetone, H2O, 23 °C; h) H2, Pd/C, EtOAc, 23 °C, 42% (2 steps); i) HC(OMe)3, pTsOH, CH2Cl2, 55 °C, 90%; j) NaBH4, MeOH, −78→23 °C, 95%.
Scheme 13
Scheme 13
a) TMSCl, TMS2NH, CH2Cl2, 23 °C; Me3CCHO, TMSOTf, CH2Cl2, −25 °C, 82%; b) LHMDS, Me2C=CHCH2Br, THF, −78 °C, 66%; c) NaH, BnOH, THF, 0°C; 88%; d) 2,4,6-Cl3C6H2COCl, DMAP, CH2Cl2, 23°C, 50%; e) H2, Pd/C, EtOAc, 23 °C, 99%; f) 2,4,6-Cl3C6H2COCl, DMAP, 1, CH2Cl2, 23 °C, 81%; g) NaOMe, MeOH, 23°C, 76%; h) TMSCHN2, 7:2 PhH/MeOH, 23 °C, 100%; i) Ac2O, DMAP, pyr, 23 °C, 74%; j) Pd/C, H2, EtOAc, 23 °C, >99%.
Scheme 14
Scheme 14
a) Hg(OAc)2, NaBH4, 1:1 THF:H2O, 23 °C, 77%; (b) Pd/C, H2, EtOAc, 23°C, 99%; (c) 2,4,6-trichlorobenzoyl chloride, DMAP, TEA, 1, CH2Cl2, 23 °C, 99%.
Scheme 15
Scheme 15
a) LHMDS, allyl bromide, THF, −78°C, 59%; b) BnOH, NaH, THF, 0→23°C, 85%; c) 2,4,6-trichlorbenzoyl chloride, DMAP, Et3N, CH2Cl2, 23 °C, 67%; d) Grubbs II, 23°C, 61%; e) Pd(OAc)2, Et3SiH, Et3N, CH2Cl2, 23 °C, 85%; f) 2,4,6-trichlorobenzoyl chloride, DMAP, Et3N, 1, CH2Cl2, 23 °C, 97%; g) NaOMe, MeOH, 0°C, 79%; (h) Pd/C, H2, MeOH then 9:1 MeOH/HOAc, 23 °C, 79%; i) Pd/C, H2, HOAc, 23°C, 69%.
Scheme 16
Scheme 16
a) Pd/C, H2, EtOAc, 23 °C, 97%; b) 2,4,6-trichlorobenzoyl chloride, DMAP, TEA, 1, CH2Cl2, 23 °C, 81%; c) NaOMe, MeOH, 23°C, 93%.

References

    1. Huang L, Xue Z. Alkaloids. 1984;23:157–226.
    1. Paudler WW, McKay J, Kerley GI. J Org Chem. 1963;28:2194–2197.
    1. Powell RG, Weisleder D, Smith CR, Wolff IA. Tetrahedron Lett. 1969;10:4081–4084.
    1. Abraham DJ, Rosenstein RD, McGandy EL. Tetrahedron Lett. 1969;10:4085–4086.
    1. Arora SK, Bates RB, Grady RA. J Org Chem. 1974;39:1269–1271. - PubMed

Publication types

MeSH terms

LinkOut - more resources