Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun;294(6):R2008-13.
doi: 10.1152/ajpregu.00737.2007. Epub 2008 Mar 26.

Role of maternal glucocorticoid inducible kinase SGK1 in fetal programming of blood pressure in response to prenatal diet

Affiliations
Free article

Role of maternal glucocorticoid inducible kinase SGK1 in fetal programming of blood pressure in response to prenatal diet

Rexhep Rexhepaj et al. Am J Physiol Regul Integr Comp Physiol. 2008 Jun.
Free article

Abstract

Maternal stress and malnutrition modify intrauterine fetal development with impact on postnatal blood pressure, nutrient, water, and electrolyte metabolism. The present study explored the possible involvement of maternal serum- and glucocorticoid-inducible kinase (SGK)-1 in fetal programming of blood pressure. To this end, wild-type (sgk1(+/+)) male mice were mated with SGK1 knockout (sgk1(-/-)) female mice, and sgk1(-/-) males with sgk1(+/+) females, resulting in both cases in heterozygotic (sgk1(-/+)) offspring. Following prenatal protein restriction, the offspring of sgk1(+/+) mothers gained weight significantly slower and had significantly higher blood pressure after birth. Moreover, a sexual dimorphism was apparent in fasting blood glucose and plasma corticosterone concentrations, with higher levels in female offspring. In contrast, prenatal protein restriction of sgk1(-/-) mothers had no significant effect on postnatal weight gain, blood pressure, plasma glucose concentration, or corticosterone levels, irrespective of offspring sex. Plasma aldosterone concentration, urinary flow rates, and urinary excretions of Na(+) and K(+) were not significantly modified by either maternal genotype or nutritional manipulation. In conclusion, maternal signals mediated by SGK1 may play a decisive role in fetal programming of hypertension induced by prenatal protein restriction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources