Structural biology of proline catabolism
- PMID: 18369526
- PMCID: PMC2664619
- DOI: 10.1007/s00726-008-0062-5
Structural biology of proline catabolism
Abstract
The proline catabolic enzymes proline dehydrogenase and Delta(1)-pyrroline-5-carboxylate dehydrogenase catalyze the 4-electron oxidation of proline to glutamate. These enzymes play important roles in cellular redox control, superoxide generation, apoptosis and cancer. In some bacteria, the two enzymes are fused into the bifunctional enzyme, proline utilization A. Here we review the three-dimensional structural information that is currently available for proline catabolic enzymes. Crystal structures have been determined for bacterial monofunctional proline dehydrogenase and Delta(1)-pyrroline-5-carboxylate dehydrogenase, as well as the proline dehydrogenase and DNA-binding domains of proline utilization A. Some of the functional insights provided by analyses of these structures are discussed, including substrate recognition, catalytic mechanism, biochemical basis of inherited proline catabolic disorders and DNA recognition by proline utilization A.
Figures









Similar articles
-
First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein-protein interactions.J Biol Chem. 2015 Jan 23;290(4):2225-34. doi: 10.1074/jbc.M114.625483. Epub 2014 Dec 9. J Biol Chem. 2015. PMID: 25492892 Free PMC article.
-
Structure, function, and mechanism of proline utilization A (PutA).Arch Biochem Biophys. 2017 Oct 15;632:142-157. doi: 10.1016/j.abb.2017.07.005. Epub 2017 Jul 14. Arch Biochem Biophys. 2017. PMID: 28712849 Free PMC article. Review.
-
Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA).J Biol Chem. 2014 Feb 7;289(6):3639-51. doi: 10.1074/jbc.M113.523704. Epub 2013 Dec 18. J Biol Chem. 2014. PMID: 24352662 Free PMC article.
-
Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus.J Biol Chem. 2007 May 11;282(19):14316-27. doi: 10.1074/jbc.M700912200. Epub 2007 Mar 7. J Biol Chem. 2007. PMID: 17344208 Free PMC article.
-
Unique structural features and sequence motifs of proline utilization A (PutA).Front Biosci (Landmark Ed). 2012 Jan 1;17(2):556-68. doi: 10.2741/3943. Front Biosci (Landmark Ed). 2012. PMID: 22201760 Free PMC article. Review.
Cited by
-
PRODH rs450046 and proline x COMT Val¹⁵⁸ Met interaction effects on intelligence and startle in adults with 22q11 deletion syndrome.Psychopharmacology (Berl). 2015 Sep;232(17):3111-22. doi: 10.1007/s00213-015-3971-5. Epub 2015 Jun 12. Psychopharmacology (Berl). 2015. PMID: 26068888
-
Nutrient acquisition and metabolism by Campylobacter jejuni.Front Cell Infect Microbiol. 2012 Feb 7;2:5. doi: 10.3389/fcimb.2012.00005. eCollection 2012. Front Cell Infect Microbiol. 2012. PMID: 22919597 Free PMC article. Review.
-
First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein-protein interactions.J Biol Chem. 2015 Jan 23;290(4):2225-34. doi: 10.1074/jbc.M114.625483. Epub 2014 Dec 9. J Biol Chem. 2015. PMID: 25492892 Free PMC article.
-
Proline utilization by Bacillus subtilis: uptake and catabolism.J Bacteriol. 2012 Feb;194(4):745-58. doi: 10.1128/JB.06380-11. Epub 2011 Dec 2. J Bacteriol. 2012. PMID: 22139509 Free PMC article.
-
Proline metabolism increases katG expression and oxidative stress resistance in Escherichia coli.J Bacteriol. 2015 Feb;197(3):431-40. doi: 10.1128/JB.02282-14. Epub 2014 Nov 10. J Bacteriol. 2015. PMID: 25384482 Free PMC article.
References
-
- Adams E, Frank L. Metabolism of proline and the hydroxyprolines. Annu Rev Biochem. 1980;49:1005–1061. - PubMed
-
- Baban BA, Vinod MP, Tanner JJ, Becker DF. Probing a hydrogen bond pair and the FAD redox properties in the proline dehydrogenase domain of Escherichia coli PutA. Biochim Biophys Acta. 2004;1701:49–59. - PubMed
-
- Bearne SL, Wolfenden R. Glutamate gamma-semialdehyde as a natural transition state analogue inhibitor of Escherichia coli glucosamine-6-phosphate synthase. Biochemistry. 1995;34:11515–11520. - PubMed
-
- Becker DF, Thomas EA. Redox properties of the PutA protein from Escherichia coli and the influence of the flavin redox state on PutA-DNA interactions. Biochemistry. 2001;40:4714–4721. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases