Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008;9(3):214.
doi: 10.1186/gb-2008-9-3-214. Epub 2008 Mar 28.

Cytoplasmic dynein could be key to understanding neurodegeneration

Affiliations
Review

Cytoplasmic dynein could be key to understanding neurodegeneration

Gareth T Banks et al. Genome Biol. 2008.

Abstract

A new mouse mutation, Sprawling, highlights an essential role for the dynein heavy chain in sensory neuron function, but it lacks the ability of other known heavy-chain mutations to ameliorate neurodegeneration due to defective superoxide dismutase.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Heavy-chain dynein mutations. (a) A schematic diagram of the cytoplasmic dynein complex. The core of the complex comprises a homodimer of heavy-chain subunits (DYNC1H1), the carboxy-terminal half of which form seven AAA-ATPase domains (labelled 1 to 6 and C). The dynein intermediate (DYNC1I) and light-intermediate (DYNC1LI) chains bind to the amino-terminal domain of the heavy chains. The light chains (DYNLRB, DYNLT and DYNLL) all bind to the intermediate chains. The dynactin complex (not shown) binds to the cytoplasmic dynein intermediate chains. Adapted from [2]. (b) Protein domain map of the cytoplasmic dynein heavy chain, showing the location of the mutations Loa, Cra1 and Swl. The motor domain consists of the six known AAA-ATPase domains (AAA 1 to 6) and an unrelated seventh domain (AAAC). The microtubule-binding domain lies between AAA4 and AAA5. The amino-terminal half of the protein contains the intermediate (DYNC1I), light-intermediate (DYNC1LI) and heavy (DYNC1H1) chain binding domains [21,22]. The Loa mutation falls within both the DYNC1H1 dimerization and DYNC1I binding domains. The Cra1 and Swl mutations fall outside of the DYNC1I binding domain, but still within the DYNC1H1 dimerization domain. (c) The hind-limb clasping phenotype of Loa/+ mice. When held by the tail, wild-type (+/+) mice splay their hind legs away from their body. In contrast, Loa/+ mice withdraw their hind limbs, pulling them into their body. Swl/+ mice display a similar phenotype.

References

    1. Chen XJ, Levedakou EN, Millen KJ, Wollmann RL, Soliven B, Popko B. Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic dynein heavy chain 1 gene. J Neurosci. 2007;27:14515–14524. doi: 10.1523/JNEUROSCI.4338-07.2007. - DOI - PMC - PubMed
    1. Pfister KK, Shah PR, Hummerich H, Russ A, Cotton J, Annuar AA, King SM, Fisher EM. Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet. 2006;2:e1. doi: 10.1371/journal.pgen.0020001. - DOI - PMC - PubMed
    1. Gennerich A, Carter AP, Reck-Peterson SL, Vale RD. Force-induced bidirectional stepping of cytoplasmic dynein. Cell. 2007;131:952–965. doi: 10.1016/j.cell.2007.10.016. - DOI - PMC - PubMed
    1. Karki S, Holzbaur EL. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol. 1999;11:45–53. doi: 10.1016/S0955-0674(99)80006-4. - DOI - PubMed
    1. Traer CJ, Rutherford AC, Palmer KJ, Wassmer T, Oakley J, Attar N, Carlton JG, Kremerskothen J, Stephens DJ, Cullen PJ. SNX4 coordinates endosomal sorting of TfnR with dynein-mediated transport into the endocytic recycling compartment. Nat Cell Biol. 2007;9:1370–1380. doi: 10.1038/ncb1656. - DOI - PubMed

Publication types