Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep;57(3):307-13.
doi: 10.1016/j.parint.2008.01.006. Epub 2008 Apr 18.

Characterization of brain inflammation during primary amoebic meningoencephalitis

Affiliations

Characterization of brain inflammation during primary amoebic meningoencephalitis

Isaac Cervantes-Sandoval et al. Parasitol Int. 2008 Sep.

Abstract

Naegleria fowleri is a free-living amoeba and the etiologic agent of primary amoebic meningoencephalitis (PAM). Trophozoites reach the brain by penetrating the olfactory epithelium, and invasion of the olfactory bulbs results in an intense inflammatory reaction. The contribution of the inflammatory response to brain damage in experimental PAM has not been delineated. Using both optical and electron microscopy, we analyzed the morphologic changes in the brain parenchyma due to inflammation during experimental PAM. Several N. fowleri trophozoites were observed in the olfactory bulbs 72 h post-inoculation, and the number of amoebae increased rapidly over the next 24 h. Eosinophils and neutrophils surrounding the amoebae were then noted at later times during infection. Electron microscopic examination of the increased numbers of neutrophils and the interactions with trophozoites indicated an active attempt to eliminate the amoebae. The extent of inflammation increased over time, with a predominant neutrophil response indicating important signs of damage and necrosis of the parenchyma. These data suggest a probable role of inflammation in tissue damage. To test the former hypothesis, we used CD38-/- knockout mice with deficiencies in chemotaxis to compare the rate of mortality with the parental strain, C57BL/6J. The results showed that inflammation and mortality were delayed in the knockout mice. Based on these results, we suggest that the host inflammatory response and polymorphonuclear cell lysis contribute to a great extent to the central nervous system tissue damage.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources