Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Mar:1123:213-23.
doi: 10.1196/annals.1420.024.

Control of cardiac rate by "funny" channels in health and disease

Affiliations
Review

Control of cardiac rate by "funny" channels in health and disease

Andrea Barbuti et al. Ann N Y Acad Sci. 2008 Mar.

Abstract

Activation of the "funny" (pacemaker, I f) current during the diastolic depolarization phase of an action potential is the main mechanism underlying spontaneous, rhythmic activity of cardiac pacemaker cells. In the past three decades, a wealth of evidence elucidating the function of the funny current in the generation and modulation of cardiac pacemaker activity has been gathered. The slope of early diastolic depolarization, and thus the heart rate, is controlled precisely by the degree of I f activation during diastole. I f is also accurately and rapidly modulated by changes of the cytosolic concentration of the second messenger cAMP, operated by the autonomous nervous system through beta-adrenergic, mainly beta2, and in the opposite way by muscarinic receptor, stimulation. Recently, novel in vivo data, both in animal models and humans, have been collected that confirm the key role of I f in pacemaking. In particular, an inheritable point mutation in the cyclic nucleotide-binding domain of human HCN4, the main hyperpolarization-activated cyclic nucleotide (HCN) isoform contributing to native funny channels of the sinoatrial node, was shown to be associated with sinus bradycardia in a large family. Because of their properties, funny channels have long been a major target of classical pharmacological research and are now target of innovative gene/cell-based therapeutic approaches aimed to exploit their function in cardiac rate control.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources