NMDA receptors inhibit synapse unsilencing during brain development
- PMID: 18375768
- PMCID: PMC2291097
- DOI: 10.1073/pnas.0800946105
NMDA receptors inhibit synapse unsilencing during brain development
Abstract
How the billions of synapses in the adult mammalian brain are precisely specified remains one of the fundamental questions of neuroscience. Although a genetic program is likely to encode the basic neural blueprint, much evidence suggests that experience-driven activity through NMDA receptors wires up neuronal circuits by inducing a process similar to long-term potentiation. To test this notion directly, we eliminated NMDA receptors before and during synaptogenesis in single cells in vitro and in vivo. Although the prevailing model would predict that NMDA receptor deletion should strongly inhibit the maturation of excitatory circuits, we find that genetic ablation of NMDA receptor function profoundly increases the number of functional synapses between neurons. Conversely, reintroduction of NMDA receptors into NR1-deficient neurons reduces the number of functional inputs, a process requiring network activity and NMDA receptor function. Although NMDA receptor deletion increases the strength of unitary connections, it does not alter neuronal morphology, suggesting that basal NMDA receptor activation blocks the recruitment of AMPA receptors to silent synapses. Based on these results we suggest a new model for the maturation of excitatory synapses in which ongoing activation of NMDA receptors prevents premature synaptic maturation by ensuring that only punctuated bursts of activity lead to the induction of a functional synapse for the activity-dependent wiring of neural circuitry.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





References
-
- Durand GM, Kovalchuk Y, Konnerth A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature. 1996;381:71–75. - PubMed
-
- Liao D, Zhang X, O'Brien R, Ehlers MD, Huganir RL. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat Neurosci. 1999;2:37–43. - PubMed
-
- Zhu JJ, Malinow R. Acute versus chronic NMDA receptor blockade and synaptic AMPA receptor delivery. Nat Neurosci. 2002;5:513–514. - PubMed
-
- Hahm JO, Langdon RB, Sur M. Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors. Nature. 1991;351:568–570. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources