Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar;18(1):015107.
doi: 10.1063/1.2799471.

Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system

Affiliations

Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system

Mathieu Desroches et al. Chaos. 2008 Mar.

Abstract

We investigate the organization of mixed-mode oscillations in the self-coupled FitzHugh-Nagumo system. These types of oscillations can be explained as a combination of relaxation oscillations and small-amplitude oscillations controlled by canard solutions that are associated with a folded singularity on a critical manifold. The self-coupled FitzHugh-Nagumo system has a cubic critical manifold for a range of parameters, and an associated folded singularity of node-type. Hence, there exist corresponding attracting and repelling slow manifolds that intersect in canard solutions. We present a general technique for the computation of two-dimensional slow manifolds (smooth surfaces). It is based on a boundary value problem approach where the manifolds are computed as one-parameter families of orbit segments. Visualization of the computed surfaces gives unprecedented insight into the geometry of the system. In particular, our techniques allow us to find and visualize canard solutions as the intersection curves of the attracting and repelling slow manifolds.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources