Nonlocal branches of cycles, bistability, and topologically persistent mixed mode oscillations
- PMID: 18377090
- DOI: 10.1063/1.2779847
Nonlocal branches of cycles, bistability, and topologically persistent mixed mode oscillations
Abstract
A possible mechanism for generating mixed mode oscillations is based on an appropriate S-shaped structure, which graphs the relation between the parameter and the collection of periodic oscillations existing for a particular parameter value in the product of parameter and phase spaces. This natural scenario should be supplemented by simple and constructive criteria of existence, and methods of localization, of such S-shaped structures. These criteria are the main focus of the paper.
Similar articles
-
Introduction to focus issue: mixed mode oscillations: experiment, computation, and analysis.Chaos. 2008 Mar;18(1):015101. doi: 10.1063/1.2903177. Chaos. 2008. PMID: 18377082
-
Stochastic phase dynamics and noise-induced mixed-mode oscillations in coupled oscillators.Chaos. 2008 Mar;18(1):015112. doi: 10.1063/1.2790369. Chaos. 2008. PMID: 18377093
-
Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system.Chaos. 2008 Mar;18(1):015107. doi: 10.1063/1.2799471. Chaos. 2008. PMID: 18377088
-
Tweaking biological switches through a better understanding of bistability behavior.Curr Opin Biotechnol. 2008 Oct;19(5):475-81. doi: 10.1016/j.copbio.2008.08.010. Epub 2008 Oct 1. Curr Opin Biotechnol. 2008. PMID: 18804166 Free PMC article. Review.
-
Coupled oscillators: complex but not complicated cardiovascular and brain interactions.Conf Proc IEEE Eng Med Biol Soc. 2006;2006:437-40. doi: 10.1109/IEMBS.2006.259557. Conf Proc IEEE Eng Med Biol Soc. 2006. PMID: 17946833 Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources