Stochastic phase dynamics and noise-induced mixed-mode oscillations in coupled oscillators
- PMID: 18377093
- DOI: 10.1063/1.2790369
Stochastic phase dynamics and noise-induced mixed-mode oscillations in coupled oscillators
Abstract
Synaptically coupled neurons show in-phase or antiphase synchrony depending on the chemical and dynamical nature of the synapse. Deterministic theory helps predict the phase differences between two phase-locked oscillators when the coupling is weak. In the presence of noise, however, deterministic theory faces difficulty when the coexistence of multiple stable oscillatory solutions occurs. We analyze the solution structure of two coupled neuronal oscillators for parameter values between a subcritical Hopf bifurcation point and a saddle node point of the periodic branch that bifurcates from the Hopf point, where a rich variety of coexisting solutions including asymmetric localized oscillations occurs. We construct these solutions via a multiscale analysis and explore the general bifurcation scenario using the lambda-omega model. We show for both excitatory and inhibitory synapses that noise causes important changes in the phase and amplitude dynamics of such coupled neuronal oscillators when multiple oscillatory solutions coexist. Mixed-mode oscillations occur when distinct bistable solutions are randomly visited. The phase difference between the coupled oscillators in the localized solution, coexisting with in-phase or antiphase solutions, is clearly represented in the stochastic phase dynamics.
Similar articles
-
Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle.Chaos. 2008 Mar;18(1):015111. doi: 10.1063/1.2779852. Chaos. 2008. PMID: 18377092
-
Effect of common noise on phase synchronization in coupled chaotic oscillators.Chaos. 2007 Mar;17(1):013105. doi: 10.1063/1.2424423. Chaos. 2007. PMID: 17411241
-
Experimental evidence of anomalous phase synchronization in two diffusively coupled Chua oscillators.Chaos. 2006 Jun;16(2):023111. doi: 10.1063/1.2197168. Chaos. 2006. PMID: 16822014
-
A design principle underlying the synchronization of oscillations in cellular systems.J Cell Sci. 2010 Feb 15;123(Pt 4):537-43. doi: 10.1242/jcs.060061. Epub 2010 Jan 26. J Cell Sci. 2010. PMID: 20103537 Review.
-
Rhythms of the brain: an examination of mixed mode oscillation approaches to the analysis of neurophysiological data.Chaos. 2008 Mar;18(1):015115. doi: 10.1063/1.2900015. Chaos. 2008. PMID: 18377096 Review.
Cited by
-
Mixed-mode oscillations in a three-timescale coupled Morris-Lecar system.Chaos. 2024 May 1;34(5):053119. doi: 10.1063/5.0181308. Chaos. 2024. PMID: 38717416 Free PMC article.
-
Biophysical model for gamma rhythms in the olfactory bulb via subthreshold oscillations.Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21954-9. doi: 10.1073/pnas.0910964106. Epub 2009 Dec 8. Proc Natl Acad Sci U S A. 2009. PMID: 19996171 Free PMC article.
-
Analytical insights on theta-gamma coupled neural oscillators.J Math Neurosci. 2013 Aug 14;3(1):16. doi: 10.1186/2190-8567-3-16. J Math Neurosci. 2013. PMID: 23945442 Free PMC article.
-
Noise-induced synchrony of two-neuron motifs with asymmetric noise and uneven coupling.Front Comput Neurosci. 2024 Feb 23;18:1347748. doi: 10.3389/fncom.2024.1347748. eCollection 2024. Front Comput Neurosci. 2024. PMID: 38463242 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources