High-throughput 1H NMR-based metabolic analysis of human serum and urine for large-scale epidemiological studies: validation study
- PMID: 18381391
- DOI: 10.1093/ije/dym284
High-throughput 1H NMR-based metabolic analysis of human serum and urine for large-scale epidemiological studies: validation study
Abstract
Background: Metabolic profiling of biofluid specimens is an established method for investigating disease states in clinical studies but is only recently being applied to large-scale human population studies. As part of protocol development for the UK Biobank study, a (1)H nuclear magnetic resonance (NMR)-based metabonomic analysis of specimen storage effects and analytical reproducibility was carried out using urine and serum specimens from 40 volunteers.
Methods: Aliquots of each specimen were stored for t = 0 and t = 24 h at 4 degrees C prior to freezing, and in the case of serum samples for a further 12 h (t = 36), to determine whether the storage times affected specimen composition and quality. A blinded split-specimen matching exercise was implemented to assign candidate spectral pairs stored for different times using multivariate statistical analysis of the NMR data.
Results: Using a chemometric strategy, split specimens at time t = 0 and t = 24 or 36 h after storage at 4 degrees C were easily paired and the split-specimen matching task was reduced to a workable size. (1)H NMR profiling established that the t = 24 h urine and serum groups showed no systematic metabolite changes, indicating biochemical stability. Some small differences in serum specimens stored for t = 36 h at 4 degrees C were detectable only by multivariate analysis, and were attributed to generalized alterations in proteins and protein fragments, and possibly trimethylamine-N-oxide. No other specific metabolite was implicated.
Conclusions: For the purposes of NMR-based analysis, storage of urine and serum for up to t = 24 h at 4 degrees C does not detectably affect the metabolic profile and the methodology is robust. Future application of multivariate methods to data-rich studies should substantially enhance information recovery from epidemiological studies.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous