Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Apr 1;68(7):2194-203.
doi: 10.1158/0008-5472.CAN-07-3057.

Attenuation of junctional adhesion molecule-A is a contributing factor for breast cancer cell invasion

Affiliations

Attenuation of junctional adhesion molecule-A is a contributing factor for breast cancer cell invasion

Meghna U Naik et al. Cancer Res. .

Abstract

The metastatic potential of cancer cells is directly attributed to their ability to invade through the extracellular matrix. The mechanisms regulating this cellular invasiveness are poorly understood. Here, we show that junctional adhesion molecule A (JAM-A), a tight junction protein, is a key negative regulator of cell migration and invasion. JAM-A is robustly expressed in normal human mammary epithelium, and its expression is down-regulated in metastatic breast cancer tumors. In breast cancer cell lines, an inverse relationship between JAM-A expression and the ability of these cells to migrate on a collagen matrix was observed, which correlates with the known ability of these cells to metastasize. The T47D and MCF-7 cells, which migrate least, are found to express high levels of JAM-A, whereas the more migratory MDA-MB-468 cells have lower levels of JAM-A on the cell surface. MDA-MB-231 cells, which are highly migratory, express the least amount of JAM-A. Overexpression of JAM-A in MDA-MB-231 cells inhibited both migration and invasion through collagen gels. Furthermore, knockdown of JAM-A using short interfering RNAs enhanced the invasiveness of MDA-MB-231 cells as well as T47D cells. The ability of JAM-A to attenuate cell invasion correlated with the formation of increased numbers of focal adhesions and the formation of functional tight junctions. These results show for the first time that an immunoglobulin superfamily cell adhesion protein expressed at tight junctions could serve as a key negative regulator of breast cancer cell invasion and possibly metastasis. Furthermore, loss of JAM-A could be used as a biomarker for aggressive breast cancer.

PubMed Disclaimer

Publication types

LinkOut - more resources