Secondary genomic rearrangements involving immunoglobulin or MYC loci show similar prevalences in hyperdiploid and nonhyperdiploid myeloma tumors
- PMID: 18381641
- PMCID: PMC3678755
- DOI: 10.1002/gcc.20563
Secondary genomic rearrangements involving immunoglobulin or MYC loci show similar prevalences in hyperdiploid and nonhyperdiploid myeloma tumors
Abstract
The pathogenesis of multiple myeloma (MM) is thought to involve at least two pathways, which generate hyperdiploid (HRD) or nonhyperdiploid (NHRD) tumors, respectively. Apart from chromosome content, the two pathways are distinguished by five primary immunoglobulin heavy chain (IGH) rearrangements (4p16, FGFR3, and MMSET; 6p21, CCND3; 11q13, CCND1; 16q23, MAF; 20q12, MAFB) that are present mainly in NHRD tumors. To determine the prevalence and structures of IGH, immunoglobulin (IG) light chain, and MYC genomic rearrangements in MM, we have done comprehensive metaphase fluorescent in situ hybridization analyses on 48 advanced MM tumors and 47 MM cell lines. As expected, the prevalence of the five primary IGH rearrangements was nearly 70% in NHRD tumors, but only 12% in HRD tumors. However, IGH rearrangements not involving one of the five primary partners, and IG light chain rearrangements, have a similar prevalence in HRD and NHRD tumors. In addition, MYC rearrangements, which are thought to be late progression events that sometimes do not involve an IG heavy or light chain locus, also have a similar prevalence in HRD and NHRD tumors. In contrast to the primary IGH rearrangements, which usually are simple balanced translocations, these other IG rearrangements usually have complex structures, as previously described for MYC rearrangements in MM. We conclude that IG light chain and MYC rearrangements, as well as secondary IGH rearrangements, make similar contributions to the progression of both HRD and NHRD MM tumors.
Figures
References
-
- Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F, Lenz G, Hanamura I, Wright G, Xiao W, Dave S, Hurt EM, Tan B, Zhao H, Stephens O, Santra M, Williams DR, Dang L, Barlogie B, Shaughnessy JD, Jr, Kuehl WM, Staudt LM. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell. 2007;12:115–130. - PMC - PubMed
-
- Avet-Loiseau H, Daviet A, Brigaudeau C, Callet-Bauchu E, Terre C, Lafage-Pochitaloff M, Desangles F, Ramond S, Talmant P, Bataille R. Cytogenetic, interphase, and multicolor fluorescence in situ hybridization analyses in primary plasma cell leukemia: A study of 40 patients at diagnosis, on behalf of the Intergroupe Francophone du Myelome and the Groupe Francais de Cytogenetique Hematologique. Blood. 2001a;97:822–825. - PubMed
-
- Avet-Loiseau H, Gerson F, Margrangeas F, Minvielle S, Harousseau J-L, Bataille R. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood. 2001b;98:3082–3086. - PubMed
-
- Avet-Loiseau H, Facon T, Grosbois B, Magrangeas F, Rapp MJ, Harousseau JL, Minvielle S, Bataille R. Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood. 2002;99:2185–2191. - PubMed
-
- Bergsagel PL, Kuehl WM. Chromosomal translocations in multiple myeloma. Oncogene. 2001;20:5611–5622. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
