Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Apr 1;14(7):2171-9.
doi: 10.1158/1078-0432.CCR-07-4465.

Direct visualization of heterogeneous extravascular distribution of trastuzumab in human epidermal growth factor receptor type 2 overexpressing xenografts

Affiliations

Direct visualization of heterogeneous extravascular distribution of trastuzumab in human epidermal growth factor receptor type 2 overexpressing xenografts

Jennifer H E Baker et al. Clin Cancer Res. .

Erratum in

  • Clin Cancer Res. 2008 May 1;14(9):2893

Abstract

Purpose: The high molecular weight and binding affinity of trastuzumab, a monoclonal antibody in use for treatment of breast cancers overexpressing human epidermal growth factor receptor type 2 (HER2), in combination with microenvironmental factors, may limit its distribution and efficacy. We assessed and mapped the distribution of systemically given, unlabeled trastuzumab at micrometer resolution in tumor xenografts using immunohistochemistry.

Experimental design: Mice bearing MDA-435/LCC6(HER2) xenografts were given single doses of 4 or 20 mg/kg unlabeled trastuzumab with tumor harvest at various time points thereafter; bound trastuzumab was imaged directly in tumor cryosections using fluorescently tagged antihuman secondary antibodies. Combinations of additional markers, including HER2, 5-bromo-2-deoxyuridine, CD31, DioC(7)(3), desmin, and collagen IV were also mapped on the same tumor sections.

Results: Distribution of trastuzumab in MDA-435/LCC6(HER2) tumors is found to be heterogeneous, with tumor margins saturating more thoroughly in doses and times analyzed. Considerable intervessel heterogeneity is also seen. For example, in unsaturated tissues, there remain perfused vessels without any trastuzumab in addition to vessels with a few layers of positively stained perivascular cells, in addition to vessels with bound drug up to 150 microm away. This heterogeneity is independent of HER2 expression, microvessel density, and perfusion. A slightly greater proportion of vessels were associated with pericytes in sections with greater trastuzumab saturation, but this would not adequately account for observed heterogeneous trastuzumab distribution.

Conclusions: Complete penetration of trastuzumab in tumor tissue was not seen in our study, leaving the possibility that inadequate distribution may represent a mechanism for resistance to trastuzumab.

PubMed Disclaimer

Publication types