The Mathematical Foundations of 3D Compton Scatter Emission Imaging
- PMID: 18382608
- PMCID: PMC2275771
- DOI: 10.1155/2007/92780
The Mathematical Foundations of 3D Compton Scatter Emission Imaging
Abstract
The mathematical principles of tomographic imaging using detected (unscattered) X- or gamma-rays are based on the two-dimensional Radon transform and many of its variants. In this paper, we show that two new generalizations, called conical Radon transforms, are related to three-dimensional imaging processes based on detected Compton scattered radiation. The first class of conical Radon transform has been introduced recently to support imaging principles of collimated detector systems. The second class is new and is closely related to the Compton camera imaging principles and invertible under special conditions. As they are poised to play a major role in future designs of biomedical imaging systems, we present an account of their most important properties which may be relevant for active researchers in the field.
Figures






Similar articles
-
Scattered radiation emission imaging: principles and applications.Int J Biomed Imaging. 2011;2011:913893. doi: 10.1155/2011/913893. Epub 2011 Jun 7. Int J Biomed Imaging. 2011. PMID: 21747823 Free PMC article.
-
An inversion of the conical Radon transform arising in the Compton camera with helical movement.Biomed Eng Lett. 2019 Mar 21;9(2):233-243. doi: 10.1007/s13534-019-00106-y. eCollection 2019 May. Biomed Eng Lett. 2019. PMID: 31168428 Free PMC article.
-
A comprehensive review on Compton camera image reconstruction: from principles to AI innovations.Biomed Eng Lett. 2024 Sep 20;14(6):1175-1193. doi: 10.1007/s13534-024-00418-8. eCollection 2024 Nov. Biomed Eng Lett. 2024. PMID: 39465108 Free PMC article. Review.
-
Compton scattered imaging based on the V-line radon transform and its medical imaging applications.Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4300-3. doi: 10.1109/IEMBS.2010.5626139. Annu Int Conf IEEE Eng Med Biol Soc. 2010. PMID: 21095755
-
Compton scatter imaging: A tool for historical exploration.Appl Radiat Isot. 2010 Jun;68(6):993-1005. doi: 10.1016/j.apradiso.2010.01.035. Epub 2010 Jan 28. Appl Radiat Isot. 2010. PMID: 20138773 Review.
Cited by
-
Scattered radiation emission imaging: principles and applications.Int J Biomed Imaging. 2011;2011:913893. doi: 10.1155/2011/913893. Epub 2011 Jun 7. Int J Biomed Imaging. 2011. PMID: 21747823 Free PMC article.
-
An inversion of the conical Radon transform arising in the Compton camera with helical movement.Biomed Eng Lett. 2019 Mar 21;9(2):233-243. doi: 10.1007/s13534-019-00106-y. eCollection 2019 May. Biomed Eng Lett. 2019. PMID: 31168428 Free PMC article.
-
A comprehensive review on Compton camera image reconstruction: from principles to AI innovations.Biomed Eng Lett. 2024 Sep 20;14(6):1175-1193. doi: 10.1007/s13534-024-00418-8. eCollection 2024 Nov. Biomed Eng Lett. 2024. PMID: 39465108 Free PMC article. Review.
-
Varying collimation for dark-field extraction.Int J Biomed Imaging. 2009;2009:847537. doi: 10.1155/2009/847537. Epub 2010 Feb 16. Int J Biomed Imaging. 2009. PMID: 20182549 Free PMC article.
-
On the v-line radon transform and its imaging applications.Int J Biomed Imaging. 2010;2010:208179. doi: 10.1155/2010/208179. Epub 2010 Jul 13. Int J Biomed Imaging. 2010. PMID: 20706545 Free PMC article.
References
-
- Natterer F. The Mathematics of Computerized Tomography. Philadelphia, Pa, USA: SIAM; 2001. (Classics in Applied Mathematics).
-
- Cormack AM. My connection with the Radon transform. In: Gindikin S, Michor P, editors. 75 Years of Radon Transform. Vol. 4. Boston, Mass, USA: International Press; 1994. pp. 32–35. (Conference Proceedings and Lecture Notes in Mathematical Physics).
-
- Cormack AM. Representation of a function by its line integrals, with some radiological applications. Journal of Applied Physics. 1963;34(9):2722–2727.
-
- Cormack AM. Representation of a Function by Its Line Integrals, with Some Radiological Applications. II. Journal of Applied Physics. 1964;35(10):2908–2913.
-
- Radon J. Über die Bestimmung von Funktionnen durch ihre Integralwerte längs gewisser Mannigfaltikeiten. Berichte über die Verhandlungen der Säschsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Naturwissenschaftliche Klasse. 1917;69:262–277.
LinkOut - more resources
Full Text Sources
Research Materials