Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991 Nov;15(11):1151-66.
doi: 10.1016/0309-1651(91)90061-m.

Glycosylphosphatidylinositol anchored recognition molecules that function in axonal fasciculation, growth and guidance in the nervous system

Affiliations
Review

Glycosylphosphatidylinositol anchored recognition molecules that function in axonal fasciculation, growth and guidance in the nervous system

F S Walsh et al. Cell Biol Int Rep. 1991 Nov.

Abstract

A large number of glycoproteins in the central nervous system are attached to the cell membrane via covalent linkage to glycosylphosphatidylinositol (GPI). Many of them, including the drosophila fasciclin 1 as well as the mammalian glycoproteins Thy-1, TAG1, N-CAM and F11,F3, contactin are members of the immunoglobulin gene superfamily. These and other GPI-linked molecules have been implicated in key developmental events including selective axonal fasciculation and highly specific growth to and innervation of target tissues. In model systems fasciclin 1, TAG1 and N-CAM have been shown to be capable of mediating cell-cell adhesion via a homophilic binding mechanism confirming their operational classification as cell adhesion molecules (CAMs). However, of these molecules, only N-CAM has been shown to mediate a complex response (neurite outgrowth) via a homophilic binding mechanism. Whether the other molecules in this family mediate biological responses by binding to themselves and/or other molecules remains to be determined. Studies on N-CAM provide an ideal model system for understanding the function of GPI anchors since alternative splicing of the NCAM gene generates both lipid-linked and transmembrane N-CAM isoforms. Recent studies have shown that neurons can recognise and respond (by increased neurite outgrowth) to both lipid-linked and transmembrane N-CAM isoforms expressed on the surface of non-neuronal cells following transfection with appropriate cDNAs. The major determinant of neuronal responsiveness was the level of N-CAM expression rather than the isoform type. Neurite outgrowth in response to transfected N-CAM is mediated by transmembrane N-CAM isoforms expressed by neurons and this involves the activation of classical second messenger pathways in the neurons. One possibility is that GPI anchors are utilised when a cell has simply to provide recognition or positional information to a second cell whereas transmembrane molecules might be required for cells that actively respond to such information. The hypothesis is compatible with all the known information on N-CAM expression and function and may be extended to other adhesive events.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources