Dendritic excitability and synaptic plasticity
- PMID: 18391179
- DOI: 10.1152/physrev.00016.2007
Dendritic excitability and synaptic plasticity
Abstract
Most synaptic inputs are made onto the dendritic tree. Recent work has shown that dendrites play an active role in transforming synaptic input into neuronal output and in defining the relationships between active synapses. In this review, we discuss how these dendritic properties influence the rules governing the induction of synaptic plasticity. We argue that the location of synapses in the dendritic tree, and the type of dendritic excitability associated with each synapse, play decisive roles in determining the plastic properties of that synapse. Furthermore, since the electrical properties of the dendritic tree are not static, but can be altered by neuromodulators and by synaptic activity itself, we discuss how learning rules may be dynamically shaped by tuning dendritic function. We conclude by describing how this reciprocal relationship between plasticity of dendritic excitability and synaptic plasticity has changed our view of information processing and memory storage in neuronal networks.
Similar articles
-
Modification of Synaptic-Input Clustering by Intrinsic Excitability Plasticity on Cerebellar Purkinje Cell Dendrites.J Neurosci. 2020 Jan 8;40(2):267-282. doi: 10.1523/JNEUROSCI.3211-18.2019. Epub 2019 Nov 21. J Neurosci. 2020. PMID: 31754008 Free PMC article.
-
Synaptic Plasticity Depends on the Fine-Scale Input Pattern in Thin Dendrites of CA1 Pyramidal Neurons.J Neurosci. 2020 Mar 25;40(13):2593-2605. doi: 10.1523/JNEUROSCI.2071-19.2020. Epub 2020 Feb 11. J Neurosci. 2020. PMID: 32047054 Free PMC article.
-
Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.J Neurosci. 2006 Oct 11;26(41):10420-9. doi: 10.1523/JNEUROSCI.2650-06.2006. J Neurosci. 2006. PMID: 17035526 Free PMC article.
-
Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity.Trends Neurosci. 2007 Sep;30(9):456-63. doi: 10.1016/j.tins.2007.06.010. Epub 2007 Aug 31. Trends Neurosci. 2007. PMID: 17765330 Review.
-
The back and forth of dendritic plasticity.Neuron. 2007 Dec 20;56(6):947-53. doi: 10.1016/j.neuron.2007.12.004. Neuron. 2007. PMID: 18093518 Review.
Cited by
-
Useful Caged Compounds for Cell Physiology.Acc Chem Res. 2020 Aug 18;53(8):1593-1604. doi: 10.1021/acs.accounts.0c00292. Epub 2020 Jul 21. Acc Chem Res. 2020. PMID: 32692149 Free PMC article.
-
Calcium-based dendritic excitability and its regulation in the deep cerebellar nuclei.J Neurophysiol. 2013 May;109(9):2282-92. doi: 10.1152/jn.00925.2012. Epub 2013 Feb 20. J Neurophysiol. 2013. PMID: 23427305 Free PMC article.
-
Attention-dependent reductions in burstiness and action-potential height in macaque area V4.Nat Neurosci. 2013 Aug;16(8):1125-31. doi: 10.1038/nn.3463. Epub 2013 Jul 14. Nat Neurosci. 2013. PMID: 23852114 Free PMC article.
-
Target-specific expression of presynaptic NMDA receptors in neocortical microcircuits.Neuron. 2012 Aug 9;75(3):451-66. doi: 10.1016/j.neuron.2012.06.017. Neuron. 2012. PMID: 22884329 Free PMC article.
-
Stable learning of functional maps in self-organizing spiking neural networks with continuous synaptic plasticity.Front Comput Neurosci. 2013 Feb 27;7:10. doi: 10.3389/fncom.2013.00010. eCollection 2013. Front Comput Neurosci. 2013. PMID: 23450808 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources