Probing microscopic origins of confined subdiffusion by first-passage observables
- PMID: 18391208
- PMCID: PMC2311379
- DOI: 10.1073/pnas.0712158105
Probing microscopic origins of confined subdiffusion by first-passage observables
Abstract
Subdiffusive motion of tracer particles in complex crowded environments, such as biological cells, has been shown to be widespread. This deviation from Brownian motion is usually characterized by a sublinear time dependence of the mean square displacement (MSD). However, subdiffusive behavior can stem from different microscopic scenarios that cannot be identified solely by the MSD data. In this article we present a theoretical framework that permits the analytical calculation of first-passage observables (mean first-passage times, splitting probabilities, and occupation times distributions) in disordered media in any dimensions. This analysis is applied to two representative microscopic models of subdiffusion: continuous-time random walks with heavy tailed waiting times and diffusion on fractals. Our results show that first-passage observables provide tools to unambiguously discriminate between the two possible microscopic scenarios of subdiffusion. Moreover, we suggest experiments based on first-passage observables that could help in determining the origin of subdiffusion in complex media, such as living cells, and discuss the implications of anomalous transport to reaction kinetics in cells.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



Similar articles
-
Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.Curr Pharm Biotechnol. 2010 Aug;11(5):527-43. doi: 10.2174/138920110791591454. Curr Pharm Biotechnol. 2010. PMID: 20553227 Free PMC article.
-
Zero constant formula for first-passage observables in bounded domains.Phys Rev Lett. 2008 Sep 26;101(13):130601. doi: 10.1103/PhysRevLett.101.130601. Epub 2008 Sep 24. Phys Rev Lett. 2008. PMID: 18851430
-
Anomalous diffusion in a quenched-trap model on fractal lattices.Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):010102. doi: 10.1103/PhysRevE.91.010102. Epub 2015 Jan 9. Phys Rev E Stat Nonlin Soft Matter Phys. 2015. PMID: 25679550
-
Anomalous transport in the crowded world of biological cells.Rep Prog Phys. 2013 Apr;76(4):046602. doi: 10.1088/0034-4885/76/4/046602. Epub 2013 Mar 12. Rep Prog Phys. 2013. PMID: 23481518 Review.
-
Mechanisms underlying anomalous diffusion in the plasma membrane.Curr Top Membr. 2015;75:167-207. doi: 10.1016/bs.ctm.2015.03.002. Epub 2015 Apr 15. Curr Top Membr. 2015. PMID: 26015283 Review.
Cited by
-
Universal algorithm for identification of fractional Brownian motion. A case of telomere subdiffusion.Biophys J. 2012 Nov 7;103(9):1839-47. doi: 10.1016/j.bpj.2012.09.040. Biophys J. 2012. PMID: 23199912 Free PMC article.
-
Chromosomal locus tracking with proper accounting of static and dynamic errors.Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):062716. doi: 10.1103/PhysRevE.91.062716. Epub 2015 Jun 29. Phys Rev E Stat Nonlin Soft Matter Phys. 2015. PMID: 26172745 Free PMC article.
-
Quantifying biomolecule diffusivity using an optimal Bayesian method.Biophys J. 2010 Feb 17;98(4):596-605. doi: 10.1016/j.bpj.2009.10.051. Biophys J. 2010. PMID: 20159156 Free PMC article.
-
Evidence and quantification of memory effects in competitive first-passage events.Sci Adv. 2025 Mar 21;11(12):eadp2386. doi: 10.1126/sciadv.adp2386. Epub 2025 Mar 21. Sci Adv. 2025. PMID: 40117368 Free PMC article.
-
Subdiffusive motion of a polymer composed of subdiffusive monomers.Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 1):011913. doi: 10.1103/PhysRevE.82.011913. Epub 2010 Jul 19. Phys Rev E Stat Nonlin Soft Matter Phys. 2010. PMID: 20866654 Free PMC article.
References
-
- Metzler R, Klafter J. The random walk's guide to anomalous diffusion: A fractionnal dynamics approach. Phys Rep. 2000;339:1–77.
-
- Metzler R, Klafter J. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J Phys A. 2004;37:R161–R208.
-
- Scher H, Montroll EW. Anomalous transit-time dispersion in amorphous solids. Phys Rev B. 1975;12:2455–2477.
-
- Kopelman R, Klymko PW, Newhouse JS, Anacker LW. Reaction kinetics on fractals: Random-walker simulations and excition experiments. Phys Rev B. 1984;29:3747–3748.
-
- Scher H, Margolin G, Metzler R, Klafter J, Berkowitz B. The dynamical foundation of fractal stream chemistry: The origin of extremely long retention times. Geophys Res Lett. 2002;29:1061.
MeSH terms
LinkOut - more resources
Full Text Sources