Structural analysis of the complex of Keap1 with a prothymosin alpha peptide
- PMID: 18391415
- PMCID: PMC2374262
- DOI: 10.1107/S1744309108004995
Structural analysis of the complex of Keap1 with a prothymosin alpha peptide
Abstract
The Nrf2 transcription factor, which plays important roles in oxidative and xenobiotic stress, is negatively regulated by the cytoplasmic repressor Keap1. The beta-propeller/Kelch domain of Keap1, which is formed by the double-glycine repeat and C-terminal region domains (Keap1-DC), interacts directly with the Neh2 domain of Nrf2. The nuclear oncoprotein prothymosin alpha (ProTalpha) also interacts directly with Keap1 and may play a role in the dissociation of the Keap1-Nrf2 complex. The structure of Keap1-DC complexed with a ProTalpha peptide (amino acids 39-54) has been determined at 1.9 A resolution. The Keap1-bound ProTalpha peptide possesses a hairpin conformation and binds to the Keap1 protein at the bottom region of the beta-propeller domain. Complex formation occurs as a consequence of their complementary electrostatic interactions. A comparison of the present structure with recently reported Keap1-DC complex structures revealed that the DLG and ETGE motifs of the Neh2 domain of Nrf2 and the ProTalpha peptide bind to Keap1 in a similar manner but with different binding potencies.
Figures




Similar articles
-
Structural insights into the similar modes of Nrf2 transcription factor recognition by the cytoplasmic repressor Keap1.J Synchrotron Radiat. 2008 May;15(Pt 3):273-6. doi: 10.1107/S090904950705114X. Epub 2008 Apr 18. J Synchrotron Radiat. 2008. PMID: 18421157 Free PMC article.
-
Fuzzy complex formation between the intrinsically disordered prothymosin α and the Kelch domain of Keap1 involved in the oxidative stress response.J Mol Biol. 2013 Mar 25;425(6):1011-27. doi: 10.1016/j.jmb.2013.01.005. Epub 2013 Jan 11. J Mol Biol. 2013. PMID: 23318954
-
Microsecond molecular dynamics simulations of intrinsically disordered proteins involved in the oxidative stress response.PLoS One. 2011;6(11):e27371. doi: 10.1371/journal.pone.0027371. Epub 2011 Nov 18. PLoS One. 2011. PMID: 22125611 Free PMC article.
-
Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome.Arch Biochem Biophys. 2005 Jan 15;433(2):342-50. doi: 10.1016/j.abb.2004.10.012. Arch Biochem Biophys. 2005. PMID: 15581590 Review.
-
Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles.Free Radic Biol Med. 2004 May 15;36(10):1208-13. doi: 10.1016/j.freeradbiomed.2004.02.075. Free Radic Biol Med. 2004. PMID: 15110385 Review.
Cited by
-
NRF2 Regulation Processes as a Source of Potential Drug Targets against Neurodegenerative Diseases.Biomolecules. 2020 Jun 14;10(6):904. doi: 10.3390/biom10060904. Biomolecules. 2020. PMID: 32545924 Free PMC article. Review.
-
Basic principles and emerging concepts in the redox control of transcription factors.Antioxid Redox Signal. 2011 Oct 15;15(8):2335-81. doi: 10.1089/ars.2010.3534. Epub 2011 Apr 5. Antioxid Redox Signal. 2011. PMID: 21194351 Free PMC article. Review.
-
Role of Nrf2 in Pancreatic Cancer.Antioxidants (Basel). 2021 Dec 30;11(1):98. doi: 10.3390/antiox11010098. Antioxidants (Basel). 2021. PMID: 35052602 Free PMC article. Review.
-
Beyond repression of Nrf2: An update on Keap1.Free Radic Biol Med. 2020 Sep;157:63-74. doi: 10.1016/j.freeradbiomed.2020.03.023. Epub 2020 Mar 28. Free Radic Biol Med. 2020. PMID: 32234331 Free PMC article. Review.
-
Advances in KEAP1-based PROTACs as emerging therapeutic modalities: Structural basis and progress.Redox Biol. 2025 Sep;85:103781. doi: 10.1016/j.redox.2025.103781. Epub 2025 Jul 21. Redox Biol. 2025. PMID: 40714402 Free PMC article. Review.
References
-
- Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760–763. - PubMed
-
- Emsley, P. & Cowtan, K. (2004). Acta Cryst. D60, 2126–2132. - PubMed
-
- Evstafieva, A. G., Belov, G. A., Rubtsov, Y. P., Kalkum, M., Joseph, B., Chichkova, N. V., Sukhacheva, E. A., Bogdanov, A. A., Pettersson, R. F., Agol, V. I. & Vartapetian, A. B. (2003). Exp. Cell Res. 284, 211–223. - PubMed
-
- Gomez-Marquez, J., Segade, F., Dosil, M., Pichel, J. G., Bustelo, X. R. & Freire, M. (1989). J. Biol. Chem. 264, 8451–8454. - PubMed
-
- Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M. & Nabeshima, Y. (1997). Biochem. Biophys. Res. Commun. 236, 313–322. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases