Prevalence of type-specific HPV infection by age and grade of cervical cytology: data from the ARTISTIC trial
- PMID: 18392052
- PMCID: PMC2391119
- DOI: 10.1038/sj.bjc.6604324
Prevalence of type-specific HPV infection by age and grade of cervical cytology: data from the ARTISTIC trial
Abstract
Human papillomavirus (HPV) infection causes cervical cancer and premalignant dysplasia. Type-specific HPV prevalence data provide a basis for assessing the impact of HPV vaccination programmes on cervical cytology. We report high-risk HPV (HR-HPV) type-specific prevalence data in relation to cervical cytology for 24,510 women (age range: 20-64; mean age 40.2 years) recruited into the ARTISTIC trial, which is being conducted within the routine NHS Cervical Screening Programme in Greater Manchester. The most common HR-HPV types were HPV16, 18, 31, 51 and 52, which accounted for 60% of all HR-HPV types detected. There was a marked decline in the prevalence of HR-HPV infection with age, but the proportion due to each HPV type did not vary greatly with age. Multiple infections were common below the age of 30 years but less so between age 30 and 64 years. Catch-up vaccination of this sexually active cohort would be expected to reduce the number of women with moderate or worse cytology by 45%, but the number with borderline or mild cytology would fall by only 7%, giving an overall reduction of 12% in the number of women with abnormal cytology and 27% in the number with any HR-HPV infection. In the absence of broader cross-protection, the large majority of low-grade and many high-grade abnormalities may still occur in sexually active vaccinated women.
Figures
References
-
- Brown D, for the FUTURE Study Group (2007) HPV type 6/11/16/18 vaccine: first analysis of cross-protection against persistent infection, cervical intraepithelial neoplasia (CIN), and adenocarcinoma in situ (AIS) caused by oncogenic HPV types in addition to 16/18. Poster presentation at 47th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), Chicago, 17–20 September 2007
-
- Castle P, Gravitt P, Solomon D, Wheeler C, Schiffman M (2008) Comparison of linear array and line blot assay for detection of human papillomavirus and diagnosis of cervical precancer and cancer in the atypical squamous cell of undetermined significance and low-grade squamous intraepithelial lesion triage study. J Clin Micro 46: 109–117 - PMC - PubMed
-
- Clifford GM, Gallus S, Herrero R, Munoz N, Snijders PJ, Vaccarella S, Anh PT, Ferreccio C, Hieu NT, Matos E, Molano M, Rajkumar R, Ronco G, de Sanjose S, Shin HR, Sukvirach S, Thomas JO, Tunsakul S, Meijer CJ, Franceschi S (2005) Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. Lancet 366: 991–998 - PubMed
-
- Coutlee F, Rouleau D, Petignat P, Ghattas G, Kornegay JR, Schlag P, Boyle S, Hankins C, Vezina S, Cote P, Macleod J, Voyer H, Forest P, Walmsley S, The Canadian Women's HIV Study Group, Franco E (2006) Enhanced detection and typing of human papillomavirus (HPV) DNA in anogenital samples with PGMY primers and the linear array HPV genotyping test. J Clin Micro 44: 1998–2006 - PMC - PubMed
-
- de Roda Husman AM, Walboomers JM, van den Brule AJ, Meijer CJ, Snijders PJ (1995) The use of general primers GP5 and GP6 elongated at their 3′ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol 76: 1057–1062 - PubMed