Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Apr 30;130(17):5736-43.
doi: 10.1021/ja711020q. Epub 2008 Apr 5.

STM studies of fusion of cholesterol suspensions and mixed 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/cholesterol vesicles onto a Au(111) electrode surface

Affiliations

STM studies of fusion of cholesterol suspensions and mixed 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/cholesterol vesicles onto a Au(111) electrode surface

Slawomir Sek et al. J Am Chem Soc. .

Abstract

Electrochemical scanning tunneling microscopy (EC-STM) has been applied to study the structure of the film formed by fusion of cholesterol suspensions and mixed dimyristoylphosphatidylcholine (DMPC)/cholesterol vesicles on a Au(111) electrode surface. It has been demonstrated that cholesterol molecules assemble at the gold support into several structures templated by the crystallography of the metal surface and involving flat or edge-on adsorbed molecules. Studies of the film formed by fusion of mixed DMPC/cholesterol vesicles revealed that ordered domains of either pure DMPC or pure cholesterol were formed. These results indicate that, at the metal surface, the molecules released by the rupture of a vesicle initially self-assemble into a well-ordered monolayer. The self-assembly is controlled by the hydrocarbon skeleton-metal surface interaction. In the case of mixed DMPC/cholesterol vesicles, the molecule-metal interactions induce segregation of the two components into single component domains. However, the molecule-metal interaction induced monolayer is a transient phenomenon. When more molecules accumulate at the surface, the molecule-molecule interactions dominate the assembly, and the monolayer is transformed into a bilayer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources