Host-dependent expression of Rhizobium leguminosarum bv. viciae hydrogenase is controlled at transcriptional and post-transcriptional levels in legume nodules
- PMID: 18393619
- DOI: 10.1094/MPMI-21-5-0597
Host-dependent expression of Rhizobium leguminosarum bv. viciae hydrogenase is controlled at transcriptional and post-transcriptional levels in legume nodules
Abstract
The legume host affects the expression of Rhizobium leguminosarum hydrogenase activity in root nodules. High levels of symbiotic hydrogenase activity were detected in R. leguminosarum bacteroids from different hosts, with the exception of lentil (Lens culinaris). Transcription analysis showed that the NifA-regulated R. leguminosarum hydrogenase structural gene promoter (P(1)) is poorly induced in lentil root nodules. Replacement of the P(1) promoter by the FnrN-dependent promoter of the fixN gene restored transcription of hup genes in lentil bacteroids, but not hydrogenase activity. In the P(fixN)-hupSL strain, additional copies of the hup gene cluster and nickel supplementation to lentil plants increased bacteroid hydrogenase activity. However, the level of activity in lentil still was significantly lower than in pea bacteroids, indicating that an additional factor is impairing hydrogenase expression inside lentil nodules. Immunological analysis revealed that lentil bacteroids contain reduced levels of both hydrogenase structural subunit HupL and nickel-binding protein HypB. Altogether, results indicate that hydrogenase expression is affected by the legume host at the level of both transcription of hydrogenase structural genes and biosynthesis or stability of nickel-related proteins HypB and HupL, and suggest the existence of a plant-dependent mechanism that affects hydrogenase activity during the symbiosis by limiting nickel availability to the bacteroid.
Similar articles
-
Nickel availability and hupSL activation by heterologous regulators limit symbiotic expression of the Rhizobium leguminosarum bv. viciae hydrogenase system in Hup(-) rhizobia.Appl Environ Microbiol. 2000 Mar;66(3):937-42. doi: 10.1128/AEM.66.3.937-942.2000. Appl Environ Microbiol. 2000. PMID: 10698755 Free PMC article.
-
The hypBFCDE operon from Rhizobium leguminosarum biovar viciae is expressed from an Fnr-type promoter that escapes mutagenesis of the fnrN gene.J Bacteriol. 1995 Oct;177(19):5661-9. doi: 10.1128/jb.177.19.5661-5669.1995. J Bacteriol. 1995. PMID: 7559356 Free PMC article.
-
Hydrogenase genes from Rhizobium leguminosarum bv. viciae are controlled by the nitrogen fixation regulatory protein nifA.Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6019-24. doi: 10.1073/pnas.94.12.6019. Proc Natl Acad Sci U S A. 1997. PMID: 9177161 Free PMC article.
-
Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis.FEMS Microbiol Lett. 2008 Aug;285(1):1-9. doi: 10.1111/j.1574-6968.2008.01254.x. FEMS Microbiol Lett. 2008. PMID: 18616593 Review.
-
Coevolution in Rhizobium-legume symbiosis?DNA Cell Biol. 2009 Aug;28(8):361-70. doi: 10.1089/dna.2009.0863. DNA Cell Biol. 2009. PMID: 19485766 Review.
Cited by
-
Characterization and De Novo Genome Assembly for New Rhizobium Ruizarguesonis Rhizobial Strain Vst36-3 Involved in Symbiosis with Pisum and Vicia Plants.Curr Microbiol. 2025 May 7;82(6):284. doi: 10.1007/s00284-025-04265-3. Curr Microbiol. 2025. PMID: 40335854
-
Functional and expression analysis of the metal-inducible dmeRF system from Rhizobium leguminosarum bv. viciae.Appl Environ Microbiol. 2013 Oct;79(20):6414-22. doi: 10.1128/AEM.01954-13. Epub 2013 Aug 9. Appl Environ Microbiol. 2013. PMID: 23934501 Free PMC article.
-
Increased Ascorbate Biosynthesis Does Not Improve Nitrogen Fixation Nor Alleviate the Effect of Drought Stress in Nodulated Medicago truncatula Plants.Front Plant Sci. 2021 Jun 28;12:686075. doi: 10.3389/fpls.2021.686075. eCollection 2021. Front Plant Sci. 2021. PMID: 34262586 Free PMC article.
-
Two zinc ABC transporters contribute to Rhizobium leguminosarum symbiosis with Pisum sativum and Lens culinaris.Front Plant Sci. 2025 Jun 9;16:1598744. doi: 10.3389/fpls.2025.1598744. eCollection 2025. Front Plant Sci. 2025. PMID: 40551761 Free PMC article.
-
Potential Targets for CRISPR/Cas Knockdowns to Enhance Genetic Resistance Against Some Diseases in Wheat (Triticum aestivum L.).Front Genet. 2022 Jun 16;13:926955. doi: 10.3389/fgene.2022.926955. eCollection 2022. Front Genet. 2022. PMID: 35783286 Free PMC article. Review.