Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Apr;5(2):226-36.
doi: 10.1016/j.nurt.2008.01.003.

Neuroprotection for Huntington's disease: ready, set, slow

Affiliations
Review

Neuroprotection for Huntington's disease: ready, set, slow

Steven M Hersch et al. Neurotherapeutics. 2008 Apr.

Abstract

The ultimate goal for Huntington's disease (HD) therapeutics is to develop disease-modifying neuroprotective therapies that can delay or prevent illness in those who are at genetic risk and can slow progression in those who are affected clinically. Neuroprotection is the preservation of neuronal structure, function, and viability, and neuroprotective therapy is thus targeted at the underlying pathology of HD, rather than at its specific symptoms. Preclinical target discovery research in HD is identifying numerous distinct targets, along with options for modulating them, with some proceeding into large-scale efficacy studies in early symptomatic HD subjects. The first pilot studies of neuroprotective compounds in premanifest HD are also soon to begin. This review discusses the opportunities for neuroprotection in HD, clinical methodology in premanifest and manifest HD, the clinical assessment of neuroprotection, molecular targets and therapeutic leads, and the current state of clinical development.

PubMed Disclaimer

References

    1. Zhang X, Smith DL, Meriin AB, et al. A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in vivo. Proc Natl Acad Sci U S A. 2005;102:892–897. doi: 10.1073/pnas.0408936102. - DOI - PMC - PubMed
    1. Chopra V, Fox JH, Lieberman G, et al. A small-molecule therapeutic lead for Huntington’s disease: preclinical pharmacology and efficacy of C2-8 in the R6/2 transgenic mouse. Proc Natl Acad Sci U S A. 2007;104:16685–16689. doi: 10.1073/pnas.0707842104. - DOI - PMC - PubMed
    1. Kremer B, Goldberg P, Andrew SE, et al. A worldwide study of the Huntington’s disease mutation: the sensitivity and specificity of measuring CAG repeats. N Engl J Med. 1994;330:1401–1406. doi: 10.1056/NEJM199405193302001. - DOI - PubMed
    1. Myers RH, MacDonald ME, Koroshetz WJ, et al. De novo expansion of a (CAG)n repeat in sporadic Huntington’s disease. Nat Genet. 1993;5:168–173. doi: 10.1038/ng1093-168. - DOI - PubMed
    1. Goldberg YP, Kremer B, Andrew SE, et al. Molecular analysis of new mutations for Huntington’s disease: intermediate alleles and sex of origin effects. Nat Genet. 1993;5:174–179. doi: 10.1038/ng1093-174. - DOI - PubMed

Publication types

MeSH terms

Substances