Proteases and cystic fibrosis
- PMID: 18395488
- PMCID: PMC2431113
- DOI: 10.1016/j.biocel.2008.03.003
Proteases and cystic fibrosis
Abstract
Cystic fibrosis is the most common, inherited fatal disease in Caucasians. The major cause of morbidity and mortality is chronic lung disease due to infection and inflammation in the airways leading to bronchiectasis and respiratory failure. The signature pathologic features of CF lung disease including abnormal mucus obstructing airways, chronic infection with Staphylococcus aureus, Pseudomonas aeruginosa and other gram negative bacteria, and a robust neutrophil-dominant airway inflammation, are exacerbated by unopposed proteases present at high concentrations in the ASL. There is strong evidence that proteases, particularly neutrophil elastase, contribute to the pathology of CF by impairing mucociliary clearance, interfering with innate immune functions, and perpetuating neutrophilic inflammation. The mechanisms employed by proteases to impact airway function in CF will be reviewed.
References
-
- Adler KB, Winn WC, Jr, Alberghini TV, Craighead JE. Stimulatory effect of Pseudomonas aeruginosa on mucin secretion by the respiratory epithelium. Jama. 1983;249:1615–1617. - PubMed
-
- Amitani R, Wilson R, Rutman A, Read R, Ward C, Burnett D, Stockley RA, Cole PJ. Effects of human neutrophil elastase and Pseudomonas aeruginosa proteinases on human respiratory epithelium. Am J Respir Cell Mol Biol. 1991;4:26–32. - PubMed
-
- Aoshiba K, Yasuda K, Yahui S, Tamaoki J, Nagai A. Serine proteases increase oxidative stress in lung cells. Am J Physiol Lung Cell Mol Physiol. 2001;281:L556–L564. - PubMed
-
- Armstrong DS, Grimwood K, Carlin JB, Carzino R, Gutierrez JP, Hull J, Olinsky A, Phelan EM, Robertson CF, Phelan PD. Lower airway inflammation in infants and young children with cystic fibrosis. Am J Respir Crit Care Med. 1997;156:1197–1204. - PubMed
-
- Belaaouaj A, McCarthy R, Baumann M, Gao Z, Ley TJ, Abraham SN, Shapiro SD. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med. 1998;4:615–618. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
