Modelling biological modularity with CellML
- PMID: 18397118
- DOI: 10.1049/iet-syb:20070020
Modelling biological modularity with CellML
Abstract
In recent years advances in the construction of mathematical models of biological systems have yielded an array of valuable constructs. The authors seek to provide a 'leading practice' method for implementing modularised kinetic mass-action models in order to obtain a number of advantages in model construction, validation and derived insights. The authors advocate the consideration of 'accounting cycles' or 'chains' to define 'functional' components and the separate consideration of 'messenger' components for mobile or diffusive molecular species. From a conceptual modularisation the authors illustrate, with an example drawn from signal transduction, a component-based formulation in the model exchange format cellular modelling markup language (CellML) 1.1 - demonstrating loose coupling between functionally-focused reusable components. Finally, the authors discuss the dilemmas associated with modelling protein-to-protein interactions, and the vision for using future CellML enhancements to resolve potential duplications when combining independently developed models.
Similar articles
-
The Beta Workbench: a computational tool to study the dynamics of biological systems.Brief Bioinform. 2008 Sep;9(5):437-49. doi: 10.1093/bib/bbn023. Epub 2008 May 7. Brief Bioinform. 2008. PMID: 18463130
-
Facilitating modularity and reuse: guidelines for structuring CellML 1.1 models by isolating common biophysical concepts.Exp Physiol. 2009 May;94(5):472-85. doi: 10.1113/expphysiol.2008.045161. Epub 2009 Jan 16. Exp Physiol. 2009. PMID: 19151076
-
SysBioMed report: advancing systems biology for medical applications.IET Syst Biol. 2009 May;3(3):131-6. doi: 10.1049/iet-syb.2009.0005. IET Syst Biol. 2009. PMID: 19449974
-
A structured approach for the engineering of biochemical network models, illustrated for signalling pathways.Brief Bioinform. 2008 Sep;9(5):404-21. doi: 10.1093/bib/bbn026. Epub 2008 Jun 23. Brief Bioinform. 2008. PMID: 18573813 Review.
-
CellML: its future, present and past.Prog Biophys Mol Biol. 2004 Jun-Jul;85(2-3):433-50. doi: 10.1016/j.pbiomolbio.2004.01.004. Prog Biophys Mol Biol. 2004. PMID: 15142756 Review.
Cited by
-
Hierarchical semantic composition of biosimulation models using bond graphs.PLoS Comput Biol. 2021 May 13;17(5):e1008859. doi: 10.1371/journal.pcbi.1008859. eCollection 2021 May. PLoS Comput Biol. 2021. PMID: 33983945 Free PMC article.
-
Energy-based analysis of biochemical cycles using bond graphs.Proc Math Phys Eng Sci. 2014 Nov 8;470(2171):20140459. doi: 10.1098/rspa.2014.0459. Proc Math Phys Eng Sci. 2014. PMID: 25383030 Free PMC article.
-
Sensitivity of NFAT cycling to cytosolic calcium concentration: implications for hypertrophic signals in cardiac myocytes.Biophys J. 2009 Mar 18;96(6):2095-104. doi: 10.1016/j.bpj.2008.11.064. Biophys J. 2009. PMID: 19289036 Free PMC article.
-
The Cardiac Physiome: perspectives for the future.Exp Physiol. 2009 May;94(5):597-605. doi: 10.1113/expphysiol.2008.044099. Epub 2008 Dec 19. Exp Physiol. 2009. PMID: 19098089 Free PMC article. Review.
-
Systems Biology and Multi-Omics Integration: Viewpoints from the Metabolomics Research Community.Metabolites. 2019 Apr 18;9(4):76. doi: 10.3390/metabo9040076. Metabolites. 2019. PMID: 31003499 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources