Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May;275(9):2338-53.
doi: 10.1111/j.1742-4658.2008.06387.x. Epub 2008 Apr 3.

AKAP12 in astrocytes induces barrier functions in human endothelial cells through protein kinase Czeta

Affiliations
Free article

AKAP12 in astrocytes induces barrier functions in human endothelial cells through protein kinase Czeta

Yoon Kyung Choi et al. FEBS J. 2008 May.
Free article

Abstract

Interactions between astrocytes and blood vessels are essential for the formation and maintenance of the blood-neural barrier (BNB). Astrocyte-derived A-kinase anchor protein 12 (AKAP12) influences BNB formation, but the mechanism of regulation of BNB functions by AKAP12 is not fully understood. We have defined a new pathway of barriergenesis in human retina microvascular endothelial cells (HRMECs) involving astrocytic AKAP12. Treatment of HRMECs with conditioned media from AKAP12-overexpressing astrocytes reduced phosphorylation of protein kinase Czeta (PKCzeta), decreased the levels of vascular endothelial growth factor (VEGF) mRNA and protein, and increased thrombospondin-1 (TSP-1) levels, which led to antiangiogenesis and barriergenesis. Transfection of a small interference RNA targeting PKCzeta decreased VEGF levels and increased TSP-1 levels in HRMECs. Rho is a putative downstream signal of PKCzeta, and inhibition of Rho kinase with a specific inhibitor, Y27632, decreased VEGF levels and increased TSP-1 levels. We therefore suggest that AKAP12 in astrocytes differentially regulates the expression of VEGF and TSP-1 via the inhibition of PKCzeta phosphorylation and Rho kinase activity in HRMECs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources