Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar;30(2):197-206.
doi: 10.1179/174313208X281091.

Persistence of regenerative myogenesis in spite of down-regulation of activity-dependent genes in long-term denervated rat muscle

Affiliations

Persistence of regenerative myogenesis in spite of down-regulation of activity-dependent genes in long-term denervated rat muscle

Rosa Lapalombella et al. Neurol Res. 2008 Mar.

Abstract

Contrary to general expectation, in humans, we have recently shown that after complete conus cauda lesion, the lower motoneuron denervated myofibers may survive several years. In adult rats, the sciatectomized muscle progresses in 4-6 months from severe atrophy to a dystrophic stage and undergoes a dramatic weight loss; during this process, myofiber death/regeneration processes maintain a decreasing population of very small, but vital myofibers. At the same time, in vitro electrophysiologic recordings show that denervated fibers can maintain membrane excitability longer than they can retain contractile properties. A certain level of myofiber regeneration seems to have a role in the process, with the early re-expression of embryonic subunits of integrins and acetylcholine receptor subunits. In the present work, using the reliable real-time quantitative PCR, we confirm the long-lasting occurrence of myoblast proliferation-dependent events and their focal nature. In fact, we show here that in sciatectomized muscle, the expression of 12 selected genes was differentially regulated after 3 and 9 month denervation. At both time points, indexes of muscle activity/inactivity and tissue remodeling (proteolysis, energy usage and angiogenic factors) were down-regulated, while indexes of regenerative myogenesis (Myogenin, MyoD, MRF4 and MHCemb) were up-regulated. Immunohistochemistry with anti-MHCemb and anti-NCAM monoclonal antibodies show that such regeneration events were focally distributed. We conclude that myofiber regeneration is a non-compensatory mechanism, which prolongs the chance of reinnervation during long-lasting denervation. It may also contribute to muscle recovery in paraplegic patients, even when rehabilitation strategies based on functional electric stimulation start late after spinal cord injury (SCI).

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources