Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun;104(6):1656-64.
doi: 10.1152/japplphysiol.01351.2007. Epub 2008 Apr 10.

Unilateral practice of a ballistic movement causes bilateral increases in performance and corticospinal excitability

Affiliations
Free article

Unilateral practice of a ballistic movement causes bilateral increases in performance and corticospinal excitability

Timothy J Carroll et al. J Appl Physiol (1985). 2008 Jun.
Free article

Abstract

It has long been known that practicing a task with one limb can result in performance improvements with the opposite, untrained limb. Hypotheses to account for cross-limb transfer of performance state that the effect is mediated either by neural adaptations in higher order control centers that are accessible to both limbs, or that there is a "spillover" of neural drive to the opposite hemisphere that results in bilateral adaptation. Here we address these hypotheses by assessing performance and corticospinal excitability in both hands after unilateral practice of a ballistic finger movement. Participants (n = 9) completed 300 practice trials of a ballistic task with the right hand, the aim of which was to maximize the peak abduction acceleration of the index finger. Practice caused a 140% improvement in right-hand performance and an 82% improvement for the untrained left hand. There were bilateral increases in the amplitude of responses to transcranial magnetic stimulation, but increased corticospinal excitability was not correlated with improved performance. There were no significant changes in corticospinal excitability or task performance for a control group that did not train (n = 9), indicating that performance testing for the left hand alone did not induce performance or corticospinal effects. Although the data do not provide conclusive evidence whether increased corticospinal excitability in the untrained hand is causally related to the cross-transfer of ballistic performance, the finding that ballistic practice can induce bilateral corticospinal adaptations may have important clinical implications for movement rehabilitation.

PubMed Disclaimer

Publication types

LinkOut - more resources