Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis
- PMID: 18403782
- PMCID: PMC2336800
- DOI: 10.1101/gr.075069.107
Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis
Abstract
Mycobacterium marinum, a ubiquitous pathogen of fish and amphibia, is a near relative of Mycobacterium tuberculosis, the etiologic agent of tuberculosis in humans. The genome of the M strain of M. marinum comprises a 6,636,827-bp circular chromosome with 5424 CDS, 10 prophages, and a 23-kb mercury-resistance plasmid. Prominent features are the very large number of genes (57) encoding polyketide synthases (PKSs) and nonribosomal peptide synthases (NRPSs) and the most extensive repertoire yet reported of the mycobacteria-restricted PE and PPE proteins, and related-ESX secretion systems. Some of the NRPS genes comprise a novel family and seem to have been acquired horizontally. M. marinum is used widely as a model organism to study M. tuberculosis pathogenesis, and genome comparisons confirmed the close genetic relationship between these two species, as they share 3000 orthologs with an average amino acid identity of 85%. Comparisons with the more distantly related Mycobacterium avium subspecies paratuberculosis and Mycobacterium smegmatis reveal how an ancestral generalist mycobacterium evolved into M. tuberculosis and M. marinum. M. tuberculosis has undergone genome downsizing and extensive lateral gene transfer to become a specialized pathogen of humans and other primates without retaining an environmental niche. M. marinum has maintained a large genome so as to retain the capacity for environmental survival while becoming a broad host range pathogen that produces disease strikingly similar to M. tuberculosis. The work described herein provides a foundation for using M. marinum to better understand the determinants of pathogenesis of tuberculosis.
Figures





Similar articles
-
Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions.BMC Evol Biol. 2006 Nov 15;6:95. doi: 10.1186/1471-2148-6-95. BMC Evol Biol. 2006. PMID: 17105670 Free PMC article.
-
A New ESX-1 Substrate in Mycobacterium marinum That Is Required for Hemolysis but Not Host Cell Lysis.J Bacteriol. 2019 Jun 21;201(14):e00760-18. doi: 10.1128/JB.00760-18. Print 2019 Jul 15. J Bacteriol. 2019. PMID: 30833360 Free PMC article.
-
Mycobacterium tuberculosis and Mycobacterium marinum non-homologous end-joining proteins can function together to join DNA ends in Escherichia coli.Mutagenesis. 2017 Mar 1;32(2):245-256. doi: 10.1093/mutage/gew042. Mutagenesis. 2017. PMID: 27613236 Free PMC article.
-
Modeling Tubercular ESX-1 Secretion Using Mycobacterium marinum.Microbiol Mol Biol Rev. 2020 Sep 2;84(4):e00082-19. doi: 10.1128/MMBR.00082-19. Print 2020 Nov 18. Microbiol Mol Biol Rev. 2020. PMID: 32878966 Free PMC article. Review.
-
Mycobacterium marinum as a model for understanding principles of mycobacterial pathogenesis.J Bacteriol. 2025 May 22;207(5):e0004725. doi: 10.1128/jb.00047-25. Epub 2025 Apr 30. J Bacteriol. 2025. PMID: 40304497 Free PMC article. Review.
Cited by
-
The FBPase Encoding Gene glpX Is Required for Gluconeogenesis, Bacterial Proliferation and Division In Vivo of Mycobacterium marinum.PLoS One. 2016 May 27;11(5):e0156663. doi: 10.1371/journal.pone.0156663. eCollection 2016. PLoS One. 2016. PMID: 27233038 Free PMC article.
-
Intracellular localization of the mycobacterial stressosome complex.Sci Rep. 2021 May 12;11(1):10060. doi: 10.1038/s41598-021-89069-8. Sci Rep. 2021. PMID: 33980893 Free PMC article.
-
EsxA membrane-permeabilizing activity plays a key role in mycobacterial cytosolic translocation and virulence: effects of single-residue mutations at glutamine 5.Sci Rep. 2016 Sep 7;6:32618. doi: 10.1038/srep32618. Sci Rep. 2016. PMID: 27600772 Free PMC article.
-
Comparative genomic analysis of Mycobacterium intracellulare: implications for clinical taxonomic classification in pulmonary Mycobacterium avium-intracellulare complex disease.BMC Microbiol. 2021 Apr 6;21(1):103. doi: 10.1186/s12866-021-02163-9. BMC Microbiol. 2021. PMID: 33823816 Free PMC article.
-
Investigation of the host transcriptional response to intracellular bacterial infection using Dictyostelium discoideum as a host model.BMC Genomics. 2019 Dec 10;20(1):961. doi: 10.1186/s12864-019-6269-x. BMC Genomics. 2019. PMID: 31823727 Free PMC article.
References
-
- Abdallah A.M., Verboom T., Hannes F., Safi M., Strong M., Eisenberg D., Musters R.J., Vandenbroucke-Grauls C.M., Appelmelk B.J., Luirink J., Verboom T., Hannes F., Safi M., Strong M., Eisenberg D., Musters R.J., Vandenbroucke-Grauls C.M., Appelmelk B.J., Luirink J., Hannes F., Safi M., Strong M., Eisenberg D., Musters R.J., Vandenbroucke-Grauls C.M., Appelmelk B.J., Luirink J., Safi M., Strong M., Eisenberg D., Musters R.J., Vandenbroucke-Grauls C.M., Appelmelk B.J., Luirink J., Strong M., Eisenberg D., Musters R.J., Vandenbroucke-Grauls C.M., Appelmelk B.J., Luirink J., Eisenberg D., Musters R.J., Vandenbroucke-Grauls C.M., Appelmelk B.J., Luirink J., Musters R.J., Vandenbroucke-Grauls C.M., Appelmelk B.J., Luirink J., Vandenbroucke-Grauls C.M., Appelmelk B.J., Luirink J., Appelmelk B.J., Luirink J., Luirink J., et al. A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol. Microbiol. 2006;62:667–679. - PubMed
-
- Adekambi T., Ben Salah S., Khlif M., Raoult D., Drancourt M., Ben Salah S., Khlif M., Raoult D., Drancourt M., Khlif M., Raoult D., Drancourt M., Raoult D., Drancourt M., Drancourt M. Survival of environmental mycobacteria in Acanthamoeba polyphaga. Appl. Environ. Microbiol. 2006;72:5974–5981. - PMC - PubMed
-
- Alteri C.J., Xicohténcatl-Cortes J., Hess S., Caballero-Olín G., Girón J.A., Friedman R.L., Xicohténcatl-Cortes J., Hess S., Caballero-Olín G., Girón J.A., Friedman R.L., Hess S., Caballero-Olín G., Girón J.A., Friedman R.L., Caballero-Olín G., Girón J.A., Friedman R.L., Girón J.A., Friedman R.L., Friedman R.L. Mycobacterium tuberculosis produces pili during human infection. Proc. Natl. Acad. Sci. 2007;104:5145–5150. - PMC - PubMed
-
- Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J., Gish W., Miller W., Myers E.W., Lipman D.J., Miller W., Myers E.W., Lipman D.J., Myers E.W., Lipman D.J., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. - PubMed
-
- Aronson J.D. Spontaneous tuberculosis in salt water fish. J. Infect. Dis. 1927;39:315–320.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases