ATP release via anion channels
- PMID: 18404516
- PMCID: PMC2096548
- DOI: 10.1007/s11302-005-1557-0
ATP release via anion channels
Abstract
ATP serves not only as an energy source for all cell types but as an 'extracellular messenger' for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg(2+) and/or H(+) salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP(4-) in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed.
Figures




Similar articles
-
Molecular Identities and ATP Release Activities of Two Types of Volume-Regulatory Anion Channels, VSOR and Maxi-Cl.Curr Top Membr. 2018;81:125-176. doi: 10.1016/bs.ctm.2018.07.004. Epub 2018 Aug 17. Curr Top Membr. 2018. PMID: 30243431 Review.
-
Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction.Curr Top Membr. 2019;83:205-283. doi: 10.1016/bs.ctm.2019.03.001. Epub 2019 Apr 19. Curr Top Membr. 2019. PMID: 31196606 Review.
-
Swelling-induced, CFTR-independent ATP release from a human epithelial cell line: lack of correlation with volume-sensitive cl(-) channels.J Gen Physiol. 1999 Oct;114(4):525-33. doi: 10.1085/jgp.114.4.525. J Gen Physiol. 1999. PMID: 10498671 Free PMC article.
-
Distinct pharmacological and molecular properties of the acid-sensitive outwardly rectifying (ASOR) anion channel from those of the volume-sensitive outwardly rectifying (VSOR) anion channel.Pflugers Arch. 2016 May;468(5):795-803. doi: 10.1007/s00424-015-1786-1. Epub 2016 Jan 8. Pflugers Arch. 2016. PMID: 26743872
-
ATP Release Channels.Int J Mol Sci. 2018 Mar 11;19(3):808. doi: 10.3390/ijms19030808. Int J Mol Sci. 2018. PMID: 29534490 Free PMC article. Review.
Cited by
-
Characteristics of spontaneous calcium oscillations in renal tubular epithelial cells.Clin Exp Nephrol. 2012 Jun;16(3):389-98. doi: 10.1007/s10157-012-0588-4. Epub 2012 Jan 26. Clin Exp Nephrol. 2012. PMID: 22278600
-
Trends in volume-regulated anion channel (VRAC) research: visualization and bibliometric analysis from 2014 to 2022.Front Pharmacol. 2023 Jul 19;14:1234885. doi: 10.3389/fphar.2023.1234885. eCollection 2023. Front Pharmacol. 2023. PMID: 37538172 Free PMC article.
-
Measurement of purine release with microelectrode biosensors.Purinergic Signal. 2012 Feb;8(Suppl 1):27-40. doi: 10.1007/s11302-011-9273-4. Epub 2011 Nov 18. Purinergic Signal. 2012. PMID: 22095158 Free PMC article.
-
Modulation of microglial process convergence toward neuronal dendrites by extracellular calcium.J Neurosci. 2015 Feb 11;35(6):2417-22. doi: 10.1523/JNEUROSCI.3279-14.2015. J Neurosci. 2015. PMID: 25673836 Free PMC article.
-
VNUT/SLC17A9, a vesicular nucleotide transporter, regulates osteoblast differentiation.FEBS Open Bio. 2020 Aug;10(8):1612-1623. doi: 10.1002/2211-5463.12918. Epub 2020 Jul 12. FEBS Open Bio. 2020. PMID: 32592329 Free PMC article.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15078211', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15078211/'}]}
- Burnstock G. Introduction: P2 receptors. Curr Top Med Chem 2004; 4: 793–803. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11699948', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11699948/'}]}
- Bodin P, Burnstock G. Purinergic signalling: ATP release. Neurochem Res 2001; 26: 959-9. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8214015', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/8214015/'}]}
- Dubyak GR, el Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol Cell Physiol 1993; 265: C577-06. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9755289', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/9755289/'}]}
- Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev 1998; 50: 413-2. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11137153', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11137153/'}]}
- Fields RD, Stevens B. ATP: An extracellular signaling molecule between neurons and glia. Trends Neurosci 2000; 23: 625-3. - PubMed
LinkOut - more resources
Full Text Sources