Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Apr;24(4):407-13.
doi: 10.1051/medsci/2008244407.

[Glyceroneogenesis and PEPCK-C: pharmacological targets in type 2 diabetes]

[Article in French]
Affiliations
Free article
Review

[Glyceroneogenesis and PEPCK-C: pharmacological targets in type 2 diabetes]

[Article in French]
Thomas Cadoudal et al. Med Sci (Paris). 2008 Apr.
Free article

Abstract

Obesity is a major risk factor for insulin resistance and type 2 diabetes. The link between hypertrophied adipose tissue and this pathology is thought to be non-esterified fatty acids (NEFA) arising from adipocyte lipolysis. Sustained increase in plasma NEFA induces insulin resistance. In adipocytes, a significant part of lipolytic NEFA is re-esterified to triacylglycerol. Re-esterification requires glycerol-3-phosphate which, during fasting, is synthesized from lactate, pyruvate or certain amino acids in a metabolic pathway named glyceroneogenesis. The key enzyme in this pathway is the cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C). In this review, we postulate that thiazolidinediones exert their hypolipidemic and antidiabetic effects in adipose tissue at least in part through a rapid and selective induction of PEPCK-C gene transcription leading to increased PEPCK-C and glyceroneogenesis. Subsequent fatty acid re-esterification participates in the reduction in blood NEFA and insulin resistance.

PubMed Disclaimer

MeSH terms

LinkOut - more resources