Transforming growth factor-beta induces cellular injury in experimental diabetic neuropathy
- PMID: 18406405
- PMCID: PMC2453508
- DOI: 10.1016/j.expneurol.2008.02.011
Transforming growth factor-beta induces cellular injury in experimental diabetic neuropathy
Abstract
The mechanism/s leading to diabetic neuropathy are complex. Transforming growth factor-beta1 (TGF-beta1) has been associated with diabetic nephropathy and retinopathy but not neuropathy. In this study, changes in TGF-beta isoforms were examined in vivo and in vitro. Two groups of animals, streptozotocin diabetic with neuropathy and non-diabetic controls were examined at 4 weeks (n=10/group) and 12 weeks (n=8/group). In diabetic DRG using quantitative real-time PCR (QRT-PCR), TGF-beta1 and TGF-beta2 mRNA, but not TGF-beta3, was increased at 4 and 12 weeks. In sciatic nerve TGF-beta3 mRNA was primarily increased. Immunohistochemistry (DRG) and immunoblotting (sciatic nerve) showed similar differential protein expression. In sciatic nerve TGF-beta formed homo- and hetero-dimers, of which beta(2)/beta(3), beta(1)/beta(1), and beta(1)/beta(3) were significantly increased, while that of the TGF-beta(2)/beta(2) homodimer was decreased, in diabetic compared to non-diabetic rats. In vitro, pretreatment of embryonic DRG with TGF-beta neutralizing antibody prevents the increase in total TGF-beta protein observed with high glucose using immunoblotting. In high glucose conditions, combination with TGF-beta2>beta1 increases the percent of cleaved caspase-3 compared to high glucose alone and TGF-beta neutralizing antibody inhibits this increase. Furthermore, consistent with the findings in diabetic DRG and nerve, TGF-beta isoforms applied directly in vitro reduce neurite outgrowth, and this effect is partially reversed by TGF-beta neutralizing antibody. These findings implicate upregulation of TGF-beta in experimental diabetic peripheral neuropathy and indicate a novel mechanism of cellular injury related to elevated glucose levels. In combination, these findings indicate a potential new target for treatment of diabetic peripheral neuropathy.
Figures









References
-
- Barna G, Sebestyen A, Chinopoulos CC, Nagy K, Mihalik R, Paku S, Kopper L. TGF beta 1 kills lymphoma cells using mitochondrial apoptotic pathway with the help of caspase-8. Anticancer Res. 2002;22:3867–3872. - PubMed
-
- Berent-Spillson A, Robinson A, Golovoy D, Slusher B, Rojas C, Russell JW. Protection against glucose-induced neuronal death by NAAG and GCP II inhibition is regulated by mGluR3. J. Neurochem. 2004;89:90–99. - PubMed
-
- Berent-Spillson A, Russell JW. Metabotropic glutamate receptor 3 protects neurons from glucose-induced oxidative injury by increasing intracellular glutathione concentration. J. Neurochem. 2007;101:342–354. - PubMed
-
- Bianchi R, Buyukakilli B, Brines M, Savino C, Cavaletti G, Oggioni N, Lauria G, Borgna M, Lombardi R, Cimen B, Comelekoglu U, Kanik A, Tataroglu C, Cerami A, Ghezzi P. Erythropoietin both protects from and reverses experimental diabetic neuropathy. Proc. Natl. Acad. Sci. U. S. A. %20. 2004;101:823–828. - PMC - PubMed
-
- Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N. Engl. J. Med. 2000;342:1350–1358. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials