Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;71(1 Suppl):S38-42.
doi: 10.1016/j.ijrobp.2007.05.091.

Quality assurance of positron emission tomography/computed tomography for radiation therapy

Affiliations

Quality assurance of positron emission tomography/computed tomography for radiation therapy

Lei Xing. Int J Radiat Oncol Biol Phys. 2008.

Abstract

Recent advances in radiation delivery techniques, such as intensity-modulated radiation therapy, provide unprecedented ability to exquisitely control three-dimensional dose distribution. Development of on-board imaging and other image-guidance methods significantly improved our ability to better target a radiation beam to the tumor volume. However, in reality, accurate definition of the location and boundary of the tumor target is still problematic. Biologic and physiologic imaging promises to solve the problem in a fundamental way and has a more and more important role in patient staging, treatment planning, and therapeutic assessment in radiation therapy clinics. The last decade witnessed a dramatic increase in the use of positron emission tomography and computed tomography in radiotherapy practice. To ensure safe and effective use of nuclide imaging, a rigorous quality assurance (QA) protocol of the imaging tools and integration of the imaging data must be in place. The application of nuclide imaging in radiation oncology occurs at different levels of sophistication. Quantitative use of the imaging data in treatment planning through image registration and standardized uptake value calculation is often involved. Thus, QA should not be limited to the performance of the scanner, but should also include the process of implementing image data in treatment planning, such as data transfer, image registration, and quantitation of data for delineation of tumors and sensitive structures. This presentation discusses various aspects of nuclide imaging as applied to radiotherapy and describes the QA procedures necessary for the success of biologic image-guided radiation therapy.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest: None.

Similar articles

Cited by

References

    1. Townsend DW, Carney JP, Yap JT, Hall NC. PET/CT Today and Tomorrow. The Journal of Nuclear Medicine. 2004;45:4S–14S. - PubMed
    1. Czernin J, Schelbert H. PET/CT Imaging, Facts, Options, Hopes, and Questions. The Journal of Nuclear Medicine. 2004;45:1S–3S.
    1. Vogel WV, Oyen WJ, Barentsz JO, Kaanders JH, Corstens FH. PET/CT: panacea, redundancy, or something in between? J Nucl Med. 2004;45 Suppl 1:15S–24S. - PubMed
    1. Hicks RJ, Kalff V, MacManus MP, Ware RE, Hogg A, McKenzie AF, Matthews JP, Ball DL. (18)F-FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non-small cell lung cancer. Journal of Nuclear Medicine. 2001;42(11):1596–1604. - PubMed
    1. Mac Manus MP, Hicks RJ, Ball DL, Kalff V, Matthews JP, Salminen E, Khaw P, Wirth A, Rischin D, McKenzie A. F-18 fluorodeoxyglucose positron emission tomography staging in radical radiotherapy candidates with nonsmall cell lung carcinoma: powerful correlation with survival and high impact on treatment. Cancer. 2001;92(4):886–895. - PubMed

Publication types

MeSH terms