Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun 1;309(5):225-42.
doi: 10.1002/jez.447.

Kinematics of turning maneuvers in the southern flying squirrel, Glaucomys volans

Affiliations

Kinematics of turning maneuvers in the southern flying squirrel, Glaucomys volans

Kristin L Bishop et al. J Exp Zool A Ecol Genet Physiol. .

Abstract

The ability to change direction is essential to any animal that moves around in a complex, 3D environment. In this study we present the first 3D description of body positions during gliding turns in a mammalian gliding specialist, the southern flying squirrel, Glaucomys volans. In addition, we used these kinematic data to estimate the aerodynamic forces generated by the animals and rotational velocities and accelerations of the body while turning. These results were compared with similar measurements of flying squirrels during straight glides. The two individuals used in this study differed significantly in limb position asymmetries between the two sides of their bodies and also were significantly different in measures of turning performance. The individual with better performance used limb positions consistent with a primarily lift-based turning mechanism (banked turn), whereas the individual with poorer performance used limb positions consistent with a primarily drag-based turning mechanism (crabbed turn). Both individuals employed limb movements continuously through the gliding turn, but these movements did not have any consistent relationships with body rotations or lateral acceleration. As compared with straight glides, squirrels used significantly higher angles of attack and had lower lift-to-drag ratios, but did not differ in glide angle. Contrary to the typical view of maneuvering during gliding as a simple, static form of locomotion, the results presented here indicate that mammalian gliding is a complex behavior comprising the interplay of many components of limb position and wing shape that affect the balance of forces that control the turn.

PubMed Disclaimer

Publication types

LinkOut - more resources