The subcellular localization of TRPP2 modulates its function
- PMID: 18417723
- PMCID: PMC2440294
- DOI: 10.1681/ASN.2007070730
The subcellular localization of TRPP2 modulates its function
Abstract
TRPP2, also known as polycystin-2, is a calcium permeable nonselective cation channel that is mutated in autosomal dominant polycystic kidney disease but has also been implicated in the regulation of cardiac development, renal tubular differentiation, and left-to-right (L-R) axis determination. For obtaining further insight into how TRPP2 exerts tissue-specific functions, this study took advantage of PACS-dependent trafficking of TRPP2 in zebrafish larvae. PACS proteins recognize an acidic cluster within the carboxy-terminal domain of TRPP2 that undergoes phosphorylation and mediate retrieval of TRPP2 to the Golgi and endoplasmic reticulum (ER). The interaction of human TRPP2 with PACS proteins can be inhibited by a Ser812Ala mutation (TRPP2(S812A)), thereby allowing TRPP2 to reach other subcellular compartments, and enhanced by a Ser812Asp mutation (TRPP2(S812D)), thereby trapping TRPP2 in the ER. It was found that the TRPP2(S812A) mutant rescued cyst formation of TRPP2-deficient zebrafish larvae to the same degree as wild-type TRPP2, whereas the TRPP2(S812D) mutant was significantly more effective in normalizing the distorted body axis of TRPP2-deficient fish. Surprisingly, the TRPP2(S812D) mutant rescued the abnormalities of L-R asymmetry more effectively than either wild-type or TRPP2(S812A), suggesting that the ER localization of TRPP2 plays an important role in the development of normal L-R asymmetry. Taken together, these findings support the hypothesis that TRPP2 assumes distinct subcellular localizations to exert tissue-specific functions.
Figures






References
-
- Wu G, D'Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S: Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93: 177–188, 1998 - PubMed
-
- Wu G, Markowitz GS, Li L, D'Agati VD, Factor SM, Geng L, Tibara S, Tuchman J, Cai Y, Park JH, van Adelsberg J, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S: Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 24: 75–78, 2000 - PubMed
-
- Lu W, Shen X, Pavlova A, Lakkis M, Ward CJ, Pritchard L, Harris PC, Genest DR, Perez-Atayde AR, Zhou J: Comparison of Pkd1-targeted mutants reveals that loss of polycystin-1 causes cystogenesis and bone defects. Hum Mol Genet 10: 2385–2396, 2001 - PubMed
-
- Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B: The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12: 938–943, 2002 - PubMed
-
- Karcher C, Fischer A, Schweickert A, Bitzer E, Horie S, Witzgall R, Blum M: Lack of a laterality phenotype in Pkd1 knock-out embryos correlates with absence of polycystin-1 in nodal cilia. Differentiation 73: 425–432, 2005 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases