Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun 10;314(10):2150-62.
doi: 10.1016/j.yexcr.2008.03.010. Epub 2008 Mar 21.

Membrane-type 1 matrix metalloproteinase regulates cell migration during zebrafish gastrulation: evidence for an interaction with non-canonical Wnt signaling

Affiliations

Membrane-type 1 matrix metalloproteinase regulates cell migration during zebrafish gastrulation: evidence for an interaction with non-canonical Wnt signaling

Rebecca C Coyle et al. Exp Cell Res. .

Abstract

Key to invasiveness is the ability of tumor cells to modify the extracellular matrix, become motile, and engage in directed migration towards the vasculature. One significant protein associated with metastatic progression is membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP14). How MMP14 activity is coordinated with other signaling pathways to regulate cell migration in vivo is largely unknown. Here we have used zebrafish embryogenesis as a model to understand the potential relationship between MMP14-dependent pericellular proteolysis, cell polarity, and motility. Knockdown of zebrafish Mmp14 function disrupted gastrulation convergence and extension cell movements and craniofacial morphogenesis. Using time-lapse imaging and morphometric analyses, we show that Mmp14 is required for proper cell polarity underlying the directed migration of mesodermal cells during gastrulation. We have identified a genetic interaction between mmp14 and non-canonical Wnt signaling, a pathway that also regulates cell polarity in embryonic tissues and is increasingly being linked with tumor cell migration. Finally, we demonstrate that Van Gogh-like 2, a key regulator of the non-canonical Wnt pathway, co-localizes with MMP14 and becomes redistributed towards the leading edge of polarized human cancer cells. Together, our results support the notion that pathways regulating pericellular proteolysis and cell polarity converge to promote efficient cell migration.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources