Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Apr 21:7:7.
doi: 10.1186/1476-5918-7-7.

Percent body fat estimations in college men using field and laboratory methods: a three-compartment model approach

Affiliations

Percent body fat estimations in college men using field and laboratory methods: a three-compartment model approach

Jordan R Moon et al. Dyn Med. .

Abstract

Background: Methods used to estimate percent body fat can be classified as a laboratory or field technique. However, the validity of these methods compared to multiple-compartment models has not been fully established. The purpose of this study was to determine the validity of field and laboratory methods for estimating percent fat (%fat) in healthy college-age men compared to the Siri three-compartment model (3C).

Methods: Thirty-one Caucasian men (22.5 +/- 2.7 yrs; 175.6 +/- 6.3 cm; 76.4 +/- 10.3 kg) had their %fat estimated by bioelectrical impedance analysis (BIA) using the BodyGram computer program (BIA-AK) and population-specific equation (BIA-Lohman), near-infrared interactance (NIR) (Futrex(R) 6100/XL), four circumference-based military equations [Marine Corps (MC), Navy and Air Force (NAF), Army (A), and Friedl], air-displacement plethysmography (BP), and hydrostatic weighing (HW).

Results: All circumference-based military equations (MC = 4.7% fat, NAF = 5.2% fat, A = 4.7% fat, Friedl = 4.7% fat) along with NIR (NIR = 5.1% fat) produced an unacceptable total error (TE). Both laboratory methods produced acceptable TE values (HW = 2.5% fat; BP = 2.7% fat). The BIA-AK, and BIA-Lohman field methods produced acceptable TE values (2.1% fat). A significant difference was observed for the MC and NAF equations compared to both the 3C model and HW (p < 0.006).

Conclusion: Results indicate that the BP and HW are valid laboratory methods when compared to the 3C model to estimate %fat in college-age Caucasian men. When the use of a laboratory method is not feasible, BIA-AK, and BIA-Lohman are acceptable field methods to estimate %fat in this population.

PubMed Disclaimer

References

    1. Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. The British journal of nutrition. 1974;32:77–97. doi: 10.1079/BJN19740060. - DOI - PubMed
    1. Wang ZM, Deurenberg P, Guo SS, Pietrobelli A, Wang J, Pierson RN, Jr., Heymsfield SB. Six-compartment body composition model: inter-method comparisons of total body fat measurement. Int J Obes Relat Metab Disord. 1998;22:329–337. doi: 10.1038/sj.ijo.0800590. - DOI - PubMed
    1. Siri WE. Body composition from fluid spaces and density. Analysis of methods. In: Brozek J, Henschel A, editor. Techniques for Measuring Body Composition. Washington, DC , National Academy of Sciences; 1961. pp. 223–244.
    1. Brozek J, Grande F, Anderson JT, Keys A. Densitometric Analysis of Body Composition: Revision of Some Quantitative Assumptions. Ann N Y Acad Sci. 1963;110:113–140. doi: 10.1111/j.1749-6632.1963.tb17079.x. - DOI - PubMed
    1. Fuller NJ, Jebb SA, Laskey MA, Coward WA, Elia M. Four-component model for the assessment of body composition in humans: comparison with alternative methods, and evaluation of the density and hydration of fat-free mass. Clin Sci (Lond) 1992;82:687–693. - PubMed

LinkOut - more resources