Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;26(1):57-64.

Overexpression of cellular prion protein alters postischemic Erk1/2 phosphorylation but not Akt phosphorylation and protects against focal cerebral ischemia

Affiliations
  • PMID: 18431006

Overexpression of cellular prion protein alters postischemic Erk1/2 phosphorylation but not Akt phosphorylation and protects against focal cerebral ischemia

Jens Weise et al. Restor Neurol Neurosci. 2008.

Abstract

Purpose: The physiological function of the cellular prion protein (PrPC) is still unclear. A growing body of evidence suggests that PrPC has neuroprotective properties and that its deletion increases susceptibility to focal cerebral ischemia. The purpose of this study was to elucidate the role of PrPC overexpression in ischemic brain injury in vivo.

Methods: PrPC overexpressing (TG35) and wild type (WT) mice were subjected to a 90-minute transient focal cerebral ischemia followed by infarct volume analysis 24 hours after lesion. To identify effects of PrPC overexpression on signalling pathways important for the regulation of ischemic cell death, we studied postischemic activation and expression of Akt and Erk1/2 using quantitative Western Blot analysis.

Results: TG35 mice displayed significantly smaller infarct volumes and showed reduced early postischemic Erk1/2 phosphorylation, a pathway known to exacerbate neuronal injury following transient cerebral ischemia. In contrast, PrPC overexpression did not change postischemic Akt phosphorylation, which acts anti-apoptotic and is reduced in PrPC knockout animals.

Conclusions: These results demonstrate that PrPC overexpression reduces deleterious Erk1/2 activation but does not affect Akt activation after transient cerebral ischemia, suggesting a role for distinct cytosolic signalling pathways in PrPC mediated neuroprotection.

PubMed Disclaimer

Substances

LinkOut - more resources