Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 May;159(4):279-87.
doi: 10.1016/j.resmic.2008.02.006. Epub 2008 Mar 16.

The Salmonella Typhi hlyE gene plays a role in invasion of cultured epithelial cells and its functional transfer to S. Typhimurium promotes deep organ infection in mice

Affiliations
Comparative Study

The Salmonella Typhi hlyE gene plays a role in invasion of cultured epithelial cells and its functional transfer to S. Typhimurium promotes deep organ infection in mice

Juan A Fuentes et al. Res Microbiol. 2008 May.

Abstract

Comparison of genome sequences of Salmonella enterica serovars Typhi and Typhimurium reveals that S. Typhi has a small 2.3kb genomic island missing in S. Typhimurium, designated Salmonella pathogenicity island 18 (SPI-18), which includes two potential genes. One of these, hlyE, encodes a hemolysin related to the Escherichia coli K12 HlyE hemolysin. PCR assays show that SPI-18 is present in S. Typhi and in many other, but not all, serovars of S. enterica subsp. enterica belonging to the SARB collection. HlyE activity cannot be detected in S. Typhi by means of standard plate assays. Nevertheless, we were able to reveal this activity upon lysis of bacterial cells with phages, in the presence of ampicillin, and in a ompA genetic background, conditions that compromise the integrity of the bacterial envelope. Almost all serovars of the SARB collection shown to cause systemic infections in humans have SPI-18 and hlyE and express an active hemolysin revealed upon bacterial envelope destabilization. S. Typhi hlyE mutants are impaired in invasion of human epithelial cells in vitro, and its heterologous expression in S. Typhimurium improves the colonization of deep organs in mice, demonstrating that the HlyE hemolysin is a new virulence determinant.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources