Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jul-Sep;2(3):103-11.
doi: 10.1034/j.1600-0501.1991.020302.x.

Structure of the bone-titanium interface in retrieved clinical oral implants

Affiliations

Structure of the bone-titanium interface in retrieved clinical oral implants

L Sennerby et al. Clin Oral Implants Res. 1991 Jul-Sep.

Abstract

7 clinically stable, "osseointegrated", titanium implants, inserted in human jaws for 1-16 years, were retrieved for morphological analysis of the bone-titanium interface, using 3 different preparation techniques. The bone-titanium interface varied as judged from light microscopy of ground sections. The threads of the implants were well filled (79-95%) with dense lamellar bone as quantified with morphometry. A large fraction of the implant surface (56-85%) appeared to be in direct contact with the mineralized bone. In general, the non-bone areas consisted of pockets with osteocytes, bone marrow tissue and/or vessels. Sections were prepared for light microscopy and transmission electron microscopy using a fracture technique, where the implant was separated from the embedded tissue before sectioning, and an electropolishing technique, where the bulk part of the implant was electrochemically removed. In areas judged as direct mineralized bone-titanium contact in the light microscope, the interfacial structure varied at the ultrastructural level. In areas along the interface, unmineralized tissue was present either as a narrow 0.5-1 micron wide zone containing collagen fibril or as deeper pockets containing osteocytes or vessels. In areas with mineralized bone contact, an amorphous granular layer (100-400 nm wide) with no mineral was observed in the innermost interface bordering the mineralized bone, with an electron-dense lamina limitans-like line (approximately 50 nm thick). It is concluded that the bone-titanium interface of the 7 clinically retrieved titanium oral implants examined in the present study bone was heterogenous. In areas of a direct mineralized bone-titanium contact at the ultrastructural level, mineralized bone reached close to the implant surface, but was separated by an amorphous layer, being 100-400 nm thick.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources