Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May;36(5):1551-8.
doi: 10.1097/CCM.0b013e3181782335.

Insulin inhibits tumor necrosis factor-alpha induction in myocardial ischemia/reperfusion: role of Akt and endothelial nitric oxide synthase phosphorylation

Affiliations

Insulin inhibits tumor necrosis factor-alpha induction in myocardial ischemia/reperfusion: role of Akt and endothelial nitric oxide synthase phosphorylation

Jia Li et al. Crit Care Med. 2008 May.

Abstract

Objectives: Intensive insulin therapy with tight glucose control is known to result in reduced morbidity and mortality in inflammation-related critical illness. Tumor necrosis factor (TNF)-alpha induction in myocardial infarction may trigger inflammation and have detrimental effects on cardiomyocytes. This study was designed to investigate whether insulin attenuates TNF-alpha induction in acute myocardial ischemia/reperfusion (MI/R) and the underlying signaling mechanisms.

Design: Randomized experimental study.

Setting: Research laboratory.

Subjects: Sprague-Dawley rats.

Interventions: Anesthetized rats were subjected to MI/R (30 mins/3 hrs) and were treated with saline, glucose-insulin-potassium, or glucose-potassium infusion (4 mL/kg/hr intravenously). In vitro study was performed on cultured cardiomyocytes subjected to simulated ischemia/reperfusion (SI/R).

Measurements and main results: In vivo treatment with glucose-insulin-potassium, but not glucose-potassium, significantly attenuated inflammatory response as evidenced by decreased TNF-alpha induction and myocardial myeloperoxidase activity, with concurrent reduction in creatine kinase activity and myocardial infarction compared with those in control rats. In cultured cardiomyocytes subjected to SI/R, insulin reduced TNF-alpha induction and increased Akt and endothelial nitric oxide synthase (eNOS) phosphorylation and subsequent nitric oxide (NO) production. Inhibition of insulin-stimulated NO production using either the PI3K inhibitor wortmannin or the NOS inhibitor L-NAME blocked TNF-alpha reduction afforded by insulin. Furthermore, the suppression on TNF-alpha by either insulin or TNF-alpha neutralizing antibody improved viability and reduced apoptosis of cardiomyocytes subjected to SI/R.

Conclusions: Our data showed that insulin inhibits ischemia/reperfusion-induced TNF-alpha production through the Akt-activated and eNOS-NO-dependent pathway in cardiomyocytes. The anti-inflammatory property elicited by insulin may contribute to its cardioprotective and prosurvival effects in the critically ill.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms