Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May;43(4):314-22.
doi: 10.1080/03601230801941659.

Degradation of fenamiphos in soils collected from different geographical regions: the influence of soil properties and climatic conditions

Affiliations

Degradation of fenamiphos in soils collected from different geographical regions: the influence of soil properties and climatic conditions

Tanya Cáceres et al. J Environ Sci Health B. 2008 May.

Abstract

The persistence of fenamiphos (nematicide) in five soils collected from different geographical regions such as Australia, Ecuador and India under three temperature regimes (18, 25 and 37 degrees C) simulating typical environmental conditions was studied. The effect of soil properties (soil pH, temperature and microbial biomass) on the degradation of fenamiphos was determined. The rate of degradation increased with increase in temperature. Fenamiphos degradation was higher at 37 degrees C than at 25 and 18 degrees C (except under alkaline pH). The degradation pathway differed in different soils. Fenamiphos sulfoxide (FSO) was identified as the major degradation product in all the soils. Fenamiphos sulfone (FSO2), and the corresponding phenols: fenamiphos phenol (FP), fenamiphos sulfoxide phenol (FSOP) and fenamiphos sulfone phenol (FSO2P) were also detected. The degradation of fenamiphos was faster in the alkaline soils, followed by neutral and acidic soils. Under sterile conditions, the dissipation of the pesticide was slower than in the non-sterile soils suggesting microbial role in the pesticide degradation. The generation of new knowledge on fenamiphos degradation patterns under different environmental conditions is important to achieve better pesticide risk management.

PubMed Disclaimer

Publication types

LinkOut - more resources