Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec;4(4):305-12.
doi: 10.1007/s11302-008-9100-8. Epub 2008 Apr 26.

Adenosine A(2A) receptors in Parkinson's disease treatment

Affiliations

Adenosine A(2A) receptors in Parkinson's disease treatment

Marek Cieślak et al. Purinergic Signal. 2008 Dec.

Abstract

Latest results on the action of adenosine A(2A) receptor antagonists indicate their potential therapeutic usefulness in the treatment of Parkinson's disease. Basal ganglia possess high levels of adenosine A(2A) receptors, mainly on the external surfaces of neurons located at the indirect tracts between the striatum, globus pallidus, and substantia nigra. Experiments with animal models of Parkinson's disease indicate that adenosine A(2A) receptors are strongly involved in the regulation of the central nervous system. Co-localization of adenosine A(2A) and dopaminergic D2 receptors in striatum creates a milieu for antagonistic interaction between adenosine and dopamine. The experimental data prove that the best improvement of mobility in patients with Parkinson's disease could be achieved with simultaneous activation of dopaminergic D2 receptors and inhibition of adenosine A(2A) receptors. In animal models of Parkinson's disease, the use of selective antagonists of adenosine A(2A) receptors, such as istradefylline, led to the reversibility of movement dysfunction. These compounds might improve mobility during both monotherapy and co-administration with L-DOPA and dopamine receptor agonists. The use of adenosine A(2A) receptor antagonists in combination therapy enables the reduction of the L-DOPA doses, as well as a reduction of side effects. In combination therapy, the adenosine A(2A) receptor antagonists might be used in both moderate and advanced stages of Parkinson's disease. The long-lasting administration of adenosine A(2A) receptor antagonists does not decrease the patient response and does not cause side effects typical of L-DOPA therapy. It was demonstrated in various animal models that inhibition of adenosine A(2A) receptors not only decreases the movement disturbance, but also reveals a neuroprotective activity, which might impede or stop the progression of the disease. Recently, clinical trials were completed on the use of istradefylline (KW-6002), an inhibitor of adenosine A(2A) receptors, as an anti-Parkinson drug.

PubMed Disclaimer

References

    1. Jenner P (2003) A2A antagonist as novel nondopaminergic therapy for motor dysfunction in PD. Neurology 61:32–38 - PubMed
    1. Morelli M, Wardas J (2001) Adenosine A2A receptor antagonist: potential therapeutic and neuroprotective effects in Parkinson’s disease. Neurotox Res 3:545–556 - PubMed
    1. Ikeda K, Kurokawa M, Aoyama S, Kuwana Y (2002) Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson’s disease. J Neurochem 80:262–270 - PubMed
    1. Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D, Togasaki DM (1995) Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 67:631–647 - PubMed
    1. Lotharius J, Dugan LL, O’Malley KL (1999) Distinct mechanisms underlie neurotoxin mediated cell death in cultured dopaminergic neurons. J Neurosci 19:1284–1293 - PMC - PubMed

LinkOut - more resources