Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Apr 25;9(1):36.
doi: 10.1186/1465-9921-9-36.

Superoxide dismutase A antigens derived from molecular analysis of sarcoidosis granulomas elicit systemic Th-1 immune responses

Affiliations

Superoxide dismutase A antigens derived from molecular analysis of sarcoidosis granulomas elicit systemic Th-1 immune responses

Shannon S Allen et al. Respir Res. .

Abstract

Background: Sarcoidosis is an idiopathic granulomatous disease with pathologic and immunologic features similar to tuberculosis. Routine histologic staining and culture fail to identify infectious agents. An alternative means for investigating a role of infectious agents in human pathogenesis involves molecular analysis of pathologic tissues for microbial nucleic acids, as well as recognition of microbial antigens by the host immune system. Molecular analysis for superoxide dismutase A (sodA) allows speciation of mycobacteria. SodA is an abundantly secreted virulence factor that generates cellular immune responses in infected hosts. The purpose of this study is to investigate if target antigens of the sarcoidosis immune response can be identified by molecular analysis of sarcoidosis granulomas.

Methods: We detected sodA amplicons in 12 of 17 sarcoidosis specimens, compared to 2 of 16 controls (p = 0.001, two-tailed Fisher's exact test), and 3 of 3 tuberculosis specimens (p = 0.54). Analysis of the amplicons revealed sequences identical to M. tuberculosis (MTB) complex, as well as sequences which were genetically divergent. Using peripheral blood mononuclear cells (PBMC) from 12 of the 17 sarcoidosis subjects, we performed enzyme-linked immunospot assay (ELISPOT) to assess for immune recognition of MTB sodA peptides, along with PBMC from 26 PPD- healthy volunteers, and 11 latent tuberculosis subjects.

Results: Six of 12 sarcoidosis subjects recognized the sodA peptides, compared to one of 26 PPD- controls (p = 0.002), and 6/11 PPD+ subjects (p = .68). Overall, 10 of the 12 sarcoidosis subjects from whom we obtained PBMC and archival tissue possessed molecular or immunologic evidence for sodA.

Conclusion: Dual molecular and immunologic analysis increases the ability to find infectious antigens. The detection of Th-1 immune responses to sodA peptides derived from molecular analysis of sarcoidosis granulomas reveals that these are among the target antigens contributing to sarcoidosis granulomatous inflammation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Comparison of sodA amplicons generated from sarcoidosis granulomas to M. tuberculosis sodA. PCR analysis for sodA nucleic acids in sarcoidosis granulomas revealed amplicons with 100% positional identity with M. tuberculosis complex (MTB) among 10 of 12 sarcoidosis specimens, represented by Sarcoidosis 3. Region 4 of Sarcoid 2 contained the same nucleotide substitution as Sarcoid 15 (A302G), resulting in the amino acid substitution D101G (Figure 1A). The two sarcoidosis samples were processed three months apart. Phylogenetic analysis of the amplicons placed all the sequences as most consistent with members of MTB complex, but noted that the sequences detected in Sarcoid 2 and 15 were distinct from other members, including the 10 sarcoidosis samples (Figure 1B).
Figure 2
Figure 2
Distribution of T cell frequencies among PPD negative, sarcoidosis and PPD+ subjects. The horizontal bars represent the 25th, 50th and 75th percentile respectively. There was a lack of recognition of sodA peptides among the majority of the PPD- control group, and a significant difference overall among the three groups. Among the sarcoidosis subjects, the distribution of the T cell frequencies among the sarcoidosis subjects more closely paralleled that of the PPD positive subjects also, rather than the PPD negative healthy volunteers.
Figure 3
Figure 3
Recognition of multiple sodA peptides among individual sarcoidosis subjects. Peptide screening identified peptides toward the terminal end of sodA as being immunogenic. Among the sarcoidosis subjects who recognized sodA, recognition of more than one peptide was frequently observed. Peptides 36 and 38 were frequently immunogenic, although there was variation in the magnitude of the response generated by each subject. Numerous sodA peptides were recognized by PPD+ subjects. A representative analysis of the PPD+ subjects is included. The recognition of multiple sodA peptides by the sarcoidosis subjects suggests that the sarcoidosis Th-1 immune response may be elicited by multiple antigenic peptides rather than a single dominant antigen.

References

    1. Baughman RP, Teirstein AS, Judson MA, Rossman MD, Yeager H, JR, Brenitz EA, Depalo L, Hunninghake G, Iannuzzi MC, Johns CJ, MCLennan G, Moller DR, Newman LS, Rabin DL, Rose C, Rybicki B, Weinberger SE, Terrin ML, Knatterrud GL, Cherniak R, A Case Control Etiologic Study of Sarcoidosis Group Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med. 2001;164:1885–9. - PubMed
    1. Newman LS. Metals that cause sarcoidosis. Semin Respir Infect. 1998;13:212–20. - PubMed
    1. Rose C. Hypersensitivity pneumonitis. In: Harber P, Schenker M, Balmes J, editor. Occupational and environmental respiratory disease. Mosby Year Book, Inc., St. Louis; 1996. pp. 201–215.
    1. Scadding JG, Mitchell DN. Sarcoidosis. 2. London: Chapman and Hall; 1985. pp. 36–41.
    1. Drake WP, Pei Z, Pride DT, Collins RD, Cover TL, Blaser MJ. Molecular analysis of sarcoidosis and control tissues for Mycobacteria DNA. Emerg Infect Dis. 2002;8:1328–1335. - PMC - PubMed

Publication types