Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Apr 24;9(4):215.
doi: 10.1186/gb-2008-9-4-215.

Genetic determinants of phenotypic diversity in humans

Affiliations

Genetic determinants of phenotypic diversity in humans

Nazli G Rahim et al. Genome Biol. .

Abstract

New technologies for rapidly assaying DNA sequences have revealed that the degree and nature of human genetic variation is far more complex then previously realized. These same technologies have also resulted in the identification of common genetic variants associated with more than 30 human diseases and traits.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Classification of genetic variants by composition. Schematic of sequence and structural variants compared to reference sequence. Sequence variation (indicated by red line) refers to single-nucleotide variants and small (less than 1 kb) indels. Structural variation includes inversions, translocations and copy-number variants, which result in the presence of a segment of DNA in variable numbers compared to the reference sequence, as in duplications, deletions or insertions. Adapted from [4].
Figure 2
Figure 2
Identification of genetic variation underlying human disease using linkage analysis and genome-wide association studies. (a) Rare Mendelian traits, such as a monogenic disease with autosomal dominance inheritance, can be studied using linkage analysis in a family. The disease status is followed within a pedigree (seven affected individuals depicted in red). (b) The disease loci (red bar) co-segregates with the genetic marker (blue bar), located 10 centimorgans (cM) apart. Each of the seven individuals with the disease carries the blue genetic marker, both inherited from the affected 'parent' chromosome (yellow). (c) Genetic variants underlying common diseases can be statistically identified by using SNP-based linkage disequilibrium (LD) maps. The frequency of a causative variant (red diamond) will be higher (62%) among those with the disease when compared with a control population (50%). (d) LD map of 11 variants cluster into three blocks of correlation r2 > 0.8 (red scale correlation matrix). The LD between polymorphisms needs to be empirically determined by genotyping a population and calculating the correlation.
Figure 3
Figure 3
The allelic spectrum of disease is dependent on the number of genetic variants, their frequency in a population and on the size of their phenotypic effect. Family-based linkage studies have proved successful in identifying causative genetic variants in rare Mendelian disorders, which are, by definition, caused by highly penetrant variants that have a low frequency in the population. Complex diseases are caused by multiple genetic variants that confer incremental risk of disease. Genome-wide association studies have sufficient power to detect genetic variants with modest phenotypic effects, provided that they occur at a high frequency in the population. Adapted from [92].

References

    1. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G, Lin Y, MacDonald JR, Pang AW, Shago M, Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA, Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J, Rogers YH, Frazier ME, Scherer SW. et al.The diploid genome sequence of an individual human. PLoS Biol. 2007;5:e254. doi: 10.1371/journal.pbio.0050254. - DOI - PMC - PubMed
    1. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet. 2006;7:85–97. doi: 10.1038/nrg1767. - DOI - PubMed
    1. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C. Detection of large-scale variation in the human genome. Nat Genet. 2004;36:949–951. doi: 10.1038/ng1416. - DOI - PubMed
    1. Estivill X, Armengol L. Copy number variants and common disorders: filling the gaps and exploring complexity in genome-wide association studies. PLoS Genet. 2007;3:1787–1799. doi: 10.1371/journal.pgen.0030190. - DOI - PMC - PubMed
    1. Abecasis G, Tam PK-H, Bustamante CD, Ostrander EA, Scherer SW, Chanock SJ, Kwok P-Y, Brookes AJ. Human genome variation 2006: emerging views on structural variation and large-scale SNP analysis. Nat Genet. 2007;39:153–155. doi: 10.1038/ng0207-153. - DOI - PubMed

LinkOut - more resources