Temporal variations in the dynamics of potentially microcystin-producing strains in a bloom-forming Planktothrix agardhii (Cyanobacterium) population
- PMID: 18441113
- PMCID: PMC2446561
- DOI: 10.1128/AEM.02343-07
Temporal variations in the dynamics of potentially microcystin-producing strains in a bloom-forming Planktothrix agardhii (Cyanobacterium) population
Abstract
The concentration of microcystins (MCs) produced during blooms depends on variations in both the proportion of strains containing the genes involved in MC production and the MC cell quota (the ratio between the MC concentration and the density of cells with the mcyA genotype) for toxic strains. In order to assess the dynamics of MC-producing and non-MC-producing strains and to identify the impact of environmental factors on the relative proportions of these two subpopulations, we performed a 2-year survey of a perennial bloom of Planktothrix agardhii (cyanobacteria). Applying quantitative real-time PCR to the mcyA and phycocyanin genes, we found that the proportion of cells with the mcyA genotype varied considerably over time (ranging from 30 to 80% of the population). The changes in the proportion of cells with the mcyA genotype appeared to be inversely correlated to changes in the density of P. agardhii cells and also, to a lesser extent, to the availability of certain nutrients and the abundance of cladocerans. Among toxic cells, the MC cell quota varied throughout the survey. However, a negative correlation between the MC cell quota and the mcyA cell number during two short periods characterized by marked changes in the cyanobacterial biomass was found. Finally, only 54% of the variation in the MC concentrations measured in the lake can be explained by the dynamics of the density of cells with the MC producer genotype, suggesting that this measurement is not a satisfactory method for use in monitoring programs intended to predict the toxic risk associated with cyanobacterial proliferation.
Figures





References
-
- Akcaalan, R., F. M. Young, J. S. Metcal, L. F. Morrison, M. Albay, and G. A. Codd. 2006. Microcystin analysis in single filaments of Planktothrix spp. in laboratory cultures and environmental blooms. Water Res. 40:1583-1590. - PubMed
-
- Association Française de Normalisation. 2005. NF EN ISO 6878. Qualité de l'eau—dosage du phosphore—méthode spectrométrique au molybdate d'ammonium. T90-023. Association Française de Normalisation, La Plaine Saint-Denis, France.
-
- Briand, J. F., C. Robillot, C. Quiblier-Lloberas, and C. Bernard. 2002. A perennial bloom of Planktothrix agardhii (cyanobacteria) in a shallow eutrophic French lake: limnological and microcystin production studies. Arch. Hydrobiol. 153:605-622.
-
- Briand, J. F., S. Jacquet, C. Bernard, and J. F. Humbert. 2003. Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet. Res. 34:361-378. - PubMed
-
- Briand, J. F., S. Jacquet, C. Flinois, C. Avois-Jacquet, C. Maisonnette, B. Leberre, and J. H. Humbert. 2005. Variations in the microcystin production of Planktothrix rubescens (cyanobacteria) assessed from a four-year survey of Lac du Bourget (France) and from laboratory experiments. Microb. Ecol. 50:418-428. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources