Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May 5;47(9):3903-19.
doi: 10.1021/ic702430j.

Tetra-2,3-pyrazinoporphyrazines with externally appended pyridine rings. 5. Synthesis, physicochemical and theoretical studies of a novel pentanuclear palladium(II) complex and related mononuclear species

Affiliations

Tetra-2,3-pyrazinoporphyrazines with externally appended pyridine rings. 5. Synthesis, physicochemical and theoretical studies of a novel pentanuclear palladium(II) complex and related mononuclear species

Maria Pia Donzello et al. Inorg Chem. .

Abstract

New palladium(II) complexes of the free-base tetrakis[2,3-(5,6-di-2-pyridylpyrazino)porphyrazine], [Py 8TPyzPzH 2], have been prepared and their physicochemical properties examined. The investigated compounds are the pentanuclear species [(PdCl 2) 4Py 8TPyzPzPd], the monopalladated complex [Py 8TPyzPzPd], and its corresponding octaiodide salt [(2-Mepy) 8TPyzPzPd](I) 8. All three Pd (II) complexes have a common central pyrazinoporphyrazine core and differ only at the periphery of the macrocycle, where the simple dipyridinopyrazine fragments present in [Py 8TPyzPzPd] bear four PdCl 2 units coordinated at the pyridine N atoms in the pentanuclear complex, [(PdCl 2) 4Py 8TPyzPzPd], or carry pyridine-N(CH 3) (+) moieties in the iodide of the octacation [(2-Mepy) 8TPyzPzPd] (8+). The structural features of the pentanuclear complex [(PdCl 2) 4Py 8TPyzPzPd], partly supported by X-ray data and solution (1)H NMR spectra of the [(CN) 2Py 2PyzPdCl 2] precursor, were elucidated through one- and two-dimensional (1)H NMR spectra in solution and density functional theory (DFT) calculations. Structural information on the monopalladated complex [Py 8TPyzPzPd] was also obtained from DFT calculations. It was found that in the complex [(PdCl 2) 4Py 8TPyzPzPd] the peripheral PdCl 2 units adopt a py-py coordination mode and the generated N 2PdCl 2 moieties are directed nearly perpendicular to the plane of the pyrazinoporphyrazine ring, strictly recalling the arrangement found for the palladated precursor [(CN) 2Py 2PyzPdCl 2]. NMR and DFT results consistently indicate that of the four structural isomers predictable for [(PdCl 2) 4Py 8TPyzPzPd], one having all four N 2PdCl 2 moieties pointing on the same side of the macrocyclic framework (i.e., isomer 4:0, plus the 3:1 and the 2:2-cis and 2:2-trans isomers), the 4:0 isomer ( C 4 v symmetry) is the predominant form present. According to cyclic voltammetry and spectroelectrochemical results in pyridine, dimethyl sulfoxide (DMSO), and dimethylformamide (DMF), the monopalladated complex [Py 8TPyzPzPd] undergoes four reversible or quasi-reversible one-electron ligand-centered reductions, similar to the behavior also observed for the pentanuclear complex [(PdCl 2) 4Py 8TPyzPzPd], which shows an additional reduction peak attributable to the presence of PdCl 2. Owing to the electron-withdrawing properties of the PdCl 2 units, the pentanuclear complex is easier to reduce than the mononuclear complex [Py 8TPyzPzPd], some related [Py 8TPyzPzM] complexes, and their porphyrin or porphyrazine analogues, so much so that the corresponding monoanion radical is generated at potentials close to 0.0 V vs SCE in DMSO or DMF. In turn, the monoanion of [(2-Mepy) 8TPyzPzPd](I) 8 is also extremely easy to generate electrochemically. Indeed, because of the eight positively charged N-CH 3 (+) groups in this complex the first reduction occurs at potentials close to +0.10 V in DMSO or DMF. The redox behavior of the mono- and pentapalladated complexes has been rationalized on the basis of a detailed DFT analysis of their ground-state electronic structure.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources